The VIG (Vacuum Insulated Glazing) unit, composite glazing in which the space between glass panes is filled with vacuum, is one of the most advanced technologies. The key elements of the construction of VIG plates are the support pillars. Therefore, an important issue is the analysis of their mechanical properties, such as Young's modulus and their variability over a long period of time. Machine learning (ML) methods are undergoing tremendous development these days. Among the many different techniques included in AI, neural networks (NN) and extreme gradient boosting (XGB) algorithms deserve special attention. In this study, to train selected methods of machine learning, numerical data developed in the VIG plate modelling process using Abaqus program were used. The test method proposed in this article is based on the VIG plate subjected to forced vibrations of specific frequencies and then the reading of the dynamic response of the composite plate. Such collected and pre-developed experimental data were used to obtain the mechanical parameters of the steel elements located inside the analysed vacuum glazing. In the future, the proposed research methods can be used to analyse the mechanical properties of other types of composite panels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386526PMC
http://dx.doi.org/10.3390/ma16145055DOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning methods
8
vacuum insulated
8
insulated glazing
8
composite panels
8
mechanical properties
8
vig plate
8
methods
4
methods non-destructive
4
non-destructive testing
4

Similar Publications

Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med

January 2025

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Background: Bullying, encompassing physical, psychological, social, or educational harm, affects approximately 1 in 20 United States teens aged 12-18. The prevalence and impact of bullying, including online bullying, necessitate a deeper understanding of risk and protective factors to enhance prevention efforts. This study investigated the key risk and protective factors most highly associated with adolescent bullying victimization.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Athlete engagement is influenced by several factors, including cohesion, passion and mental toughness. Machine learning methods are frequently employed to construct predictive models as a result of their high efficiency. In order to comprehend the effects of cohesion, passion and mental toughness on athlete engagement, this study utilizes the relevant methods of machine learning to construct a prediction model, so as to find the intrinsic connection between them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!