A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Overview of Approaches to Increase the Electrochemical Activity of Conventional Perovskite Air Electrodes. | LitMetric

Overview of Approaches to Increase the Electrochemical Activity of Conventional Perovskite Air Electrodes.

Materials (Basel)

Laboratory of Kinetics, Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620137, Russia.

Published: July 2023

The progressive research trends in the development of low-cost, commercially competitive solid oxide fuel cells with reduced operating temperatures are closely linked to the search for new functional materials as well as technologies to improve the properties of established materials traditionally used in high-temperature devices. Significant efforts are being made to improve air electrodes, which significantly contribute to the degradation of cell performance due to low oxygen reduction reaction kinetics at reduced temperatures. The present review summarizes the basic information on the methods to improve the electrochemical performance of conventional air electrodes with perovskite structure, such as lanthanum strontium manganite (LSM) and lanthanum strontium cobaltite ferrite (LSCF), to make them suitable for application in second generation electrochemical cells operating at medium and low temperatures. In addition, the information presented in this review may serve as a background for further implementation of developed electrode modification technologies involving novel, recently investigated electrode materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381493PMC
http://dx.doi.org/10.3390/ma16144967DOI Listing

Publication Analysis

Top Keywords

air electrodes
12
lanthanum strontium
8
overview approaches
4
approaches increase
4
increase electrochemical
4
electrochemical activity
4
activity conventional
4
conventional perovskite
4
perovskite air
4
electrodes progressive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!