The need for circular textiles has led to an interest in the production of biologically derived materials, generating new research into the bioproduction of textiles through design and interdisciplinary approaches. Bacterial cellulose has been produced directly from fermentation into sheets but not yet investigated in terms of producing filaments directly from fermentation. This leaves a wealth of material qualities unexplored. Further, by growing the material directly into filaments, production such as wet spinning are made redundant, thus reducing textile manufacturing steps. The aim of this study was to grow the bio-material, namely bacterial cellulose directly into a filament. This was achieved using a method of co-designing with the characteristics of biological materials. The method combines approaches of material-driven textile design and human-centred co-design to investigate co-designing with the characteristics of living materials for biological material production. The project is part of a wider exploration of bio-manufacturing textiles from waste. The practice-based approach brought together biological sciences and material design through a series of iterative experiments. This, in turn, resulted in designing with the inherent characteristics of bacterial cellulose, and by doing so filaments were designed to be fabricated directly from fermentation. In this investigation, creative exploration was encouraged within a biological laboratory space, showing how interdisciplinary collaboration can offer innovative alternative bioproduction routes for textile filament production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381431PMC
http://dx.doi.org/10.3390/ma16144893DOI Listing

Publication Analysis

Top Keywords

bacterial cellulose
16
directly fermentation
12
cellulose filaments
8
co-designing characteristics
8
biological
5
directly
5
bio-producing bacterial
4
cellulose
4
filaments
4
filaments co-designing
4

Similar Publications

Bifunctional modified bacterial cellulose-based hydrogel through sequence-dependent crosslinking towards enhanced antibacterial and cutaneous wound healing.

Int J Biol Macromol

January 2025

Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Tai'an 271018, PR China; School of Pharmacy, the Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China. Electronic address:

Chronic wounds caused by microbial infection have emerged as a major challenge on patients and medical health system. Bacterial cellulose (BC) characterized by its excellent biocompatibility and porous network, holds promise for addressing complex wound issues. However, lack of inherent antibacterial activity and cross-linking sites in the molecular network of BC have constrained its efficacy in hydrogel design and treatment of bacterial-infected wounds.

View Article and Find Full Text PDF

Nanocomposites based on metal nanoparticles (MNP) prepared with mangosteen () peel extract-mediated biosynthesis of Ag/Zn have attracted considerable interest due to their potential for various practical applications. In this study, their role in developing antibacterial protection for rubber cotton gloves is investigated. The process of mangosteen-peel-extract-mediated biosynthesis produced Ag/Zn nanocomposites with respective diameters of 23.

View Article and Find Full Text PDF

Tandem GGDEF-EAL Domain Proteins Pleiotropically Modulate c-di-GMP Metabolism Enrolled in Bacterial Cellulose Biosynthesis.

J Agric Food Chem

January 2025

Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China.

Article Synopsis
  • Cyclic diguanosine monophosphate (c-di-GMP) plays a vital role in regulating the synthesis of bacterial cellulose (BC) and is managed by enzymes known as diguanylate cyclases (DGCs) and phosphodiesterases (PDEs).
  • A study analyzed ten proteins with GGDEF-EAL tandem domains, revealing five with DGC activity and five with PDE activity, with one protein (GE03) displaying both functions.
  • Mutant strains lacking GGDEF-EAL proteins showed significant changes in BC production, while knocking out PDE proteins resulted in a 48.1% increase in BC titer, enhancing the understanding of c-di-GMP's role in BC
View Article and Find Full Text PDF

The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).

View Article and Find Full Text PDF

sp. nov., isolated from the intestines of .

Int J Syst Evol Microbiol

January 2025

College of Life Science, Shenyang Normal University, Shenyang 110000, PR China.

A Gram-stain-negative, aerobic, motile, catalase-positive, oxidase-positive, short rod-shaped marine bacterium, designated as YIC-827, was isolated from Qingdao, Shandong Province, China. The results showed that cells of strain YIC-827 could grow optimally at 25-35 °C, pH 6.5-7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!