Most acute gastroenteritis (AGE) outbreaks and sporadic cases in developing countries are attributable to infection by human norovirus (HuNoV), the enteric virus mainly transmitted via fecal-contaminated water. However, it has been challenging to study HuNoV due to the lack of suitable systems to cultivate and replicate the virus, hindering the development of treatments and vaccines. Researchers have been using virus-like particles (VLPs) and infectious viral clones to overcome this challenge as alternatives to fresh virus isolates in various in vitro and ex vivo models. VLPs are multiprotein structures that mimic the wild-type virus but cannot replicate in host cells due to the lack of genetic materials for replication, limiting downstream analysis of the virus life cycle and pathogenesis. The development of in vitro cloning systems has shown promise for HuNoV replication studies. This review discusses the approaches for constructing HuNoV-VLPs and infectious viral clones, the techniques involved, and the challenges faced. It also highlights the relationship between viral genes and their protein products and provides a perspective on technical considerations for producing efficient HuNoV-VLPs and infectious viral clones, which could substitute for native human noroviruses in future studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381778 | PMC |
http://dx.doi.org/10.3390/life13071447 | DOI Listing |
Sci Rep
December 2024
Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands.
The aetiology of Alzheimer's disease (AD) and Parkinson's disease (PD) are unknown and tend to manifest at a late stage in life; even though these neurodegenerative diseases are caused by different affected proteins, they are both characterized by neuroinflammation. Links between bacterial and viral infection and AD/PD has been suggested in several studies, however, few have attempted to establish a link between fungal infection and AD/PD. In this study we adopted a nanopore-based sequencing approach to characterise the presence or absence of fungal genera in both human brain tissue and cerebrospinal fluid (CSF).
View Article and Find Full Text PDFSci Rep
December 2024
Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.
Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
The Epstein-Barr virus (EBV) is widespread and has been related to a variety of malignancies as well as infectious mononucleosis. Despite the lack of a vaccination, antiviral medications offer some therapy alternatives. The EBV BZLF1 gene significantly impacts viral replication and infection severity.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.
Human adenovirus (HAdV) is a widely spread respiratory pathogen that can cause infections in multiple tissues and organs. Previous studies have established an association between HAdV species B (HAdV-B) infection and severe community-acquired pneumonia (SCAP). However, the connection between SCAP-associated HAdV-B infection and host factor expression profile in patients has not been systematically investigated.
View Article and Find Full Text PDFNat Commun
December 2024
Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA.
ZAP is an antiviral protein that binds to and depletes viral RNA, which is often distinguished from vertebrate host RNA by its elevated CpG content. Two ZAP cofactors, TRIM25 and KHNYN, have activities that are poorly understood. Here, we show that functional interactions between ZAP, TRIM25 and KHNYN involve multiple domains of each protein, and that the ability of TRIM25 to multimerize via its RING domain augments ZAP activity and specificity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!