A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Alternative Splicing during Fiber Development in . | LitMetric

Alternative Splicing during Fiber Development in .

Int J Mol Sci

The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China.

Published: July 2023

Cotton is a valuable cash crop in many countries. Cotton fiber is a trichome that develops from a single epidermal cell and serves as an excellent model for understanding cell differentiation and other life processes. Alternative splicing (AS) of genes is a common post-transcriptional regulatory process in plants that is essential for plant growth and development. The process of AS during cotton fiber formation, on the other hand, is mainly unknown. A substantial number of multi-exon genes were discovered to be alternatively spliced during cotton fiber formation in this study, accounting for 23.31% of the total number of genes in . Retention intron (RI) is not necessarily the most common AS type, indicating that AS genes and processes during fiber development are very temporal and tissue-specific. When compared to fiber samples, AS is more prevalent at the fiber initiation stages and in the ovule, indicating that development stages and tissues use different AS strategies. Genes involved in fiber development have gone through stage-specific AS, demonstrating that AS regulates cotton fiber development. Furthermore, AS can be regulated by trans-regulation elements such as splicing factor and cis-regulation elements such as gene length, exon numbers, and GC content, particularly at exon-intron junction sites. Our findings also suggest that increased DNA methylation may aid in the efficiency of AS, and that gene body methylation is key in AS control. Finally, our research will provide useful information about the roles of AS during the cotton fiber development process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380772PMC
http://dx.doi.org/10.3390/ijms241411812DOI Listing

Publication Analysis

Top Keywords

fiber development
20
cotton fiber
20
fiber
10
alternative splicing
8
development process
8
fiber formation
8
development
7
cotton
6
genes
5
splicing fiber
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!