Lipopolysaccharides are a type of polysaccharide mainly present in the bacterial outer membrane of Gram-negative bacteria. Recent studies have revealed that lipopolysaccharides contribute to the immune response of the host by functioning as a cancer antigen. We retrospectively recruited 198 patients with gastric cancer who underwent surgery. The presence of lipopolysaccharides was determined using immunohistochemical staining, with the intensity score indicating positivity. The relationship between lipopolysaccharides and CD8, PD-L1, TGFBI (a representative downstream gene of TGF-β signaling), wnt3a, and E-cadherin (epithelial-mesenchymal transition marker) was also investigated. Thereafter, we identified 20 patients with advanced gastric cancer receiving nivolumab and investigated the relationship between lipopolysaccharides and nivolumab sensitivity. After staining for lipopolysaccharides in the nucleus of cancer cells, 150 negative (75.8%) and 48 positive cases (24.2%) were found. The lipopolysaccharide-positive group showed increased cancer stromal TGFBI expression ( < 0.0001) and PD-L1 expression in cancer cells ( = 0.0029). Lipopolysaccharide positivity was significantly correlated with increased wnt3a signaling ( = 0.0028) and decreased E-cadherin expression ( = 0.0055); however, no significant correlation was found between lipopolysaccharide expression and overall survival rate ( = 0.71). In contrast, high TGFBI expression in the presence of LPS was associated with a worse prognosis than that in the absence of LPS ( = 0.049). Among cases receiving nivolumab, the lipopolysaccharide-negative and -positive groups had disease control rates of 66.7% and 11.8%, respectively ( = 0.088). Lipopolysaccharide positivity was associated with wnt3a, TGF-β signaling, and epithelial-mesenchymal transition and was considered to tend to promote therapeutic resistance to nivolumab.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380503PMC
http://dx.doi.org/10.3390/ijms241411790DOI Listing

Publication Analysis

Top Keywords

gastric cancer
12
nivolumab sensitivity
8
relationship lipopolysaccharides
8
tgf-β signaling
8
epithelial-mesenchymal transition
8
receiving nivolumab
8
cancer cells
8
tgfbi expression
8
lipopolysaccharide positivity
8
cancer
7

Similar Publications

Bimodal In Situ Analyzer for Circular RNA in Extracellular Vesicles Combined with Machine Learning for Accurate Gastric Cancer Detection.

Adv Sci (Weinh)

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Laboratory Medicine and Biotechnology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China.

Circular RNAs in extracellular vesicles (EV-circRNAs) are gaining recognition as potential biomarkers for the diagnosis of gastric cancer (GC). Most current research is focused on identifying new biomarkers and their functional significance in disease regulation. However, the practical application of EV-circRNAs in the early diagnosis of GC is yet to be thoroughly explored due to the low accuracy of EV-circRNAs analysis.

View Article and Find Full Text PDF

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

Trophoblast glycoprotein (TPBG) plays a significant part in the growth of specific cancers, yet its connection to gastric cancer (GC) remains uncertain. This research seeks to analyse the fluctuation in TPBG levels in GC and evaluate how TPBG expression relates to the prognosis of GC patients. TPBG expression in GC and normal gastric tissues was investigated in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database, further extracting the immunohistochemistry images from HPA database and validating by Western blot.

View Article and Find Full Text PDF

Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.

View Article and Find Full Text PDF

Background: Lymphatic metastasis in gastric cancer (GC) profoundly influences its prognosis, but the precise mechanism remains elusive. In this study, we identified the long noncoding RNA MIR181A2HG as being upregulated in GC and associated with LNs metastasis and prognosis.

Methods: The expression of MIR181A2HG in GC was identified through bioinformatics screening analysis and qRT-PCR validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!