How Big Is the Yeast Prion Universe?

Int J Mol Sci

Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia.

Published: July 2023

The number of yeast prions and prion-like proteins described since 1994 has grown from two to nearly twenty. If in the early years most scientists working with the classic mammalian prion, PrP, were skeptical about the possibility of using the term prion to refer to yeast cytoplasmic elements with unusual properties, it is now clear that prion-like phenomena are widespread and that yeast can serve as a convenient model for studying them. Here we give a brief overview of the yeast prions discovered so far and focus our attention to the various approaches used to identify them. The prospects for the discovery of new yeast prions are also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380529PMC
http://dx.doi.org/10.3390/ijms241411651DOI Listing

Publication Analysis

Top Keywords

yeast prions
12
yeast
5
big yeast
4
yeast prion
4
prion universe?
4
universe? number
4
number yeast
4
prions prion-like
4
prion-like proteins
4
proteins described
4

Similar Publications

The dynamic balance between formation and disaggregation of amyloid fibrils is associated with many neurodegenerative diseases. Multiple chaperones interact with and disaggregate amyloid fibrils, which impacts amyloid propagation and cellular phenotypes. However, it remains poorly understood whether and how site-specific binding of chaperones to amyloids facilitates the concerted disaggregation process and modulates physiological consequences in vivo.

View Article and Find Full Text PDF

[PSI]-CIC: A Deep-Learning Pipeline for the Annotation of Sectored Saccharomyces cerevisiae Colonies.

Bull Math Biol

December 2024

Department of Applied Mathematics, University of California, Merced, 5200 N Lake Drive, Merced, CA, 95343, USA.

The prion phenotype in yeast manifests as a white, pink, or red color pigment. Experimental manipulations destabilize prion phenotypes, and allow colonies to exhibit (red) sectored phenotypes within otherwise completely white colonies. Further investigation of the size and frequency of sectors that emerge as a result of experimental manipulation is capable of providing critical information on mechanisms of prion curing, but we lack a way to reliably extract this information.

View Article and Find Full Text PDF

Prion-like proteins play crucial parts in biological processes in organisms ranging from yeast to humans. For instance, many neurodegenerative diseases are believed to be caused by the production of prion-like proteins in neural tissue. As such, understanding the dynamics of prion-like protein production is a vital step toward treating neurodegenerative disease.

View Article and Find Full Text PDF

Prions represent epigenetic regulator proteins that can self-propagate their structure and confer their misfolded structure and function on normally folded proteins. Like the mammalian prion PrPSc, prions also occur in fungi. While a few prions, like Swi1, affect gene expression, none are shown to affect heterochromatin structure and function.

View Article and Find Full Text PDF

The screening of 166 extracts from tropical marine organisms (invertebrates, macroalgae) and 3 cyclolipopeptides from microorganisms against yeast prions highlighted the potential of Verongiida sponges to prevent the propagation of prions. We isolated the known compounds purealidin Q (), aplysamine-2 (), pseudoceratinine A (), aerophobin-2 (), aplysamine-1 (), and pseudoceratinine B () for the first time from the Wallisian sponge . We then tested compounds - and sixteen other bromotyrosine and bromophenol derivatives previously isolated from Verongiida sponges against yeast prions, demonstrating the potential of -, , , aplyzanzine C (), purealidin A (), psammaplysenes D () and F (), anomoian F (), and N,N-dimethyldibromotyramine ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!