This review mainly addresses applications of polymer/graphene nanocomposites in certain significant energy storage and conversion devices such as supercapacitors, Li-ion batteries, and fuel cells. Graphene has achieved an indispensable position among carbon nanomaterials owing to its inimitable structure and features. Graphene and its nanocomposites have been recognized for providing a high surface area, electron conductivity, capacitance, energy density, charge-discharge, cyclic stability, power conversion efficiency, and other advanced features in efficient energy devices. Furthermore, graphene-containing nanocomposites have superior microstructure, mechanical robustness, and heat constancy characteristics. Thus, this state-of-the-art article offers comprehensive coverage on designing, processing, and applying graphene-based nanoarchitectures in high-performance energy storage and conversion devices. Despite the essential features of graphene-derived nanocomposites, several challenges need to be overcome to attain advanced device performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380328PMC
http://dx.doi.org/10.3390/ijms241411593DOI Listing

Publication Analysis

Top Keywords

energy storage
12
graphene nanocomposites
8
storage conversion
8
conversion devices
8
energy
5
nanocomposites innovative
4
innovative materials
4
materials energy
4
storage conversion-design
4
conversion-design headways
4

Similar Publications

Atemoya fruit deteriorates rapidly during post-harvest storage. A complete understanding of the metabolic mechanisms underlying this process is crucial for developing effective preservation strategies. Metabolomic approaches combined with machine learning offer new opportunities to identify quality-related biomarkers.

View Article and Find Full Text PDF

Weighted Echo State Graph Neural Networks Based on Robust and Epitaxial Film Memristors.

Adv Sci (Weinh)

January 2025

College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.

Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.

View Article and Find Full Text PDF

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Electric vehicles (EVs) rely heavily on lithium-ion battery packs as essential energy storage components. However, inconsistencies in cell characteristics and operating conditions can lead to imbalanced state of charge (SOC) levels, resulting in reduced capacity and accelerated degradation. This study presents an active cell balancing method optimized for both charging and discharging scenarios, aiming to equalize SOC across cells and improve overall pack performance.

View Article and Find Full Text PDF

Actuation performance of MXenes in response to moisture gradients: A systematic investigation.

Talanta

December 2024

Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, PR China. Electronic address:

Humidity-responsive actuators (HRA) have garnered significant interest across various domains. Since 2020, MXene have been extensively studied for their potential in HRA, demonstrating remarkable performance. Thus far, more than 70 MXene materials have been found.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!