Induced Pluripotent Stem Cells for Tissue-Engineered Skeletal Muscles.

Int J Mol Sci

Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK.

Published: July 2023

Skeletal muscle, which comprises a significant portion of the body, is responsible for vital functions such as movement, metabolism, and overall health. However, severe injuries often result in volumetric muscle loss (VML) and compromise the regenerative capacity of the muscle. Tissue-engineered muscles offer a potential solution to address lost or damaged muscle tissue, thereby restoring muscle function and improving patients' quality of life. Induced pluripotent stem cells (iPSCs) have emerged as a valuable cell source for muscle tissue engineering due to their pluripotency and self-renewal capacity, enabling the construction of tissue-engineered artificial skeletal muscles with applications in transplantation, disease modelling, and bio-hybrid robots. Next-generation iPSC-based models have the potential to revolutionize drug discovery by offering personalized muscle cells for testing, reducing reliance on animal models. This review provides a comprehensive overview of iPSCs in tissue-engineered artificial skeletal muscles, highlighting the advancements, applications, advantages, and challenges for clinical translation. We also discussed overcoming limitations and considerations in differentiation protocols, characterization methods, large-scale production, and translational regulations. By tackling these challenges, iPSCs can unlock transformative advancements in muscle tissue engineering and therapeutic interventions for the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380861PMC
http://dx.doi.org/10.3390/ijms241411520DOI Listing

Publication Analysis

Top Keywords

skeletal muscles
12
muscle tissue
12
induced pluripotent
8
pluripotent stem
8
stem cells
8
muscle
8
tissue engineering
8
tissue-engineered artificial
8
artificial skeletal
8
tissue-engineered
4

Similar Publications

Nitric oxide (NO) is a ubiquitous signaling molecule known to modulate various physiological processes, with specific implications in skeletal muscle and broader applications in exercise performance. This review focuses on the modulation of skeletal muscle function, mitochondrial adaptation and function, redox state by NO, and the effect of nitrate supplementation on exercise performance. In skeletal muscle function, NO is believed to increase the maximal shortening velocity and peak power output of muscle fibers.

View Article and Find Full Text PDF

Introduction: Various reports have confirmed that low skeletal muscle mass, a proxy marker of sarcopenia, can be a risk factor for surgical and oncological outcomes in colon cancer. We aimed to investigate the effects of skeletal muscle mass index (SMMI) on postoperative complications, overall survival (OS), and disease-free survival (DFS) in older patients with colon cancer who underwent elective curative colon resections.

Materials And Methods: Patients over 65 years old with stage I-III colon cancer who underwent elective curative colon resections between January 2015 and December 2023 were included in this single-center retrospective longitudinal study.

View Article and Find Full Text PDF

Background: The purpose of this study was to clarify the relationships of the tibialis anterior tendon (TAT) and peroneus longus tendon (PLT) with articular cartilage degeneration on the medial cuneiform and first metatarsal.

Methods: We examined 100 feet from 50 Japanese cadavers. The TAT was classified into 4 types based on attachment site area and number of fiber bundles: Type I, two fiber bundles with equal (within 20%) attachment site areas on the first metatarsal and medial cuneiform; Type II, with two fiber bundles and a larger (>20%) attachment site area on the medial cuneiform than on the first metatarsal; Type III, with two fiber bundles and a larger (>20%) attachment site area on the first metatarsal than on the medial cuneiform; and Type IV, with three fiber bundles.

View Article and Find Full Text PDF

Background: Osteoporosis and sarcopenia frequently occur in patients with end-stage renal disease undergoing hemodialysis (HD), and depression is also a common mental health issue in this population. Despite the prevalence of these conditions, the interrelationships among them remain poorly understood in HD patients.

Methods: In this multicenter cross-sectional study, 858 HD patients from 7 dialysis centers were recruited.

View Article and Find Full Text PDF

Physical activity, cathepsin B, and cognitive health.

Trends Mol Med

January 2025

Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China. Electronic address:

Regular physical activity (PA) is beneficial for cognitive health, and cathepsin B (CTSB) - a protease released by skeletal muscle during PA - acts as a potential molecular mediator of this association. PA-induced metabolic and mechanical stress appears to increase plasma/serum CTSB levels. CTSB facilitates neurogenesis and synaptic plasticity in brain regions (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!