The past decade has seen a marked expansion in the understanding of the pathobiology of acute myocardial infarction and the systemic inflammatory response that it elicits. At the same time, a portfolio of tools has emerged to characterise some of these processes in vivo. However, in clinical practice, key decision making still largely relies on assessment built around the timing of the onset of chest pain, features on electrocardiograms and measurements of plasma troponin. Better understanding the heterogeneity of myocardial injury and patient-level responses should provide new opportunities for diagnostic stratification to enable the delivery of more rational therapies. Characterisation of the myocardium using emerging imaging techniques such as the T1, T2 and T2* mapping techniques can provide enhanced assessments of myocardial statuses. Physiological measures, which include microcirculatory resistance and coronary flow reserve, have been shown to predict outcomes in AMI and can be used to inform treatment selection. Functionally informative blood biomarkers, including cellular transcriptomics; microRNAs; extracellular vesicle analyses and soluble markers, all give insights into the nature and timing of the innate immune response and its regulation in acute MI. The integration of these and other emerging tools will be key to developing a fuller understanding of the patient-level processes of myocardial injury and repair and should fuel new possibilities for rational therapeutic intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380764 | PMC |
http://dx.doi.org/10.3390/jcm12144668 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!