Long-term natural history studies are important in rare disease research. This study aimed to assess electrophysiological and fundus autofluorescence (FAF) progression rate in 18 genetically confirmed Stargardt disease (STGD1) patients with a minimum follow-up of 10 years. Age at the first and last exams, age at onset, Snellen decimal visual acuity (VA), electroretinography (ERG), and FAF images were evaluated. Patients were classified into four Fishman stages and three electroretinography groups, and areas of definitely decreased autofluorescence (DDAF) were measured. Patients were further substratified based on genotype, and phenotype-genotype correlations were performed. The median follow-up was 18 (range 10-26) years. The median yearly VA loss was 0.009 (range 0.002-0.071), while the median progression rate of the DDAF area was 0.354 (range 0.002-4.359) mm per year. Patients harbouring p.(Gly1961Glu) or p.(Asn1868Ile) allele had significantly slower DDAF area progression when compared to patients with other genotypes (0.07 mm vs. 1.03 mm, respectively), as well as significantly later age at onset (20 years vs. 13 years, respectively). Results showed that structural and functional parameters, together with genotype, should be considered when counselling patients regarding prognosis and monitoring disease progression. Patients harbouring hypomorphic variants p.(Gly1961Glu) or p.(Asn1868Ile) presented with overall milder disease than patients with other genotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379489 | PMC |
http://dx.doi.org/10.3390/genes14071394 | DOI Listing |
PLoS Comput Biol
January 2025
Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
Sensory neurons continually adapt their response characteristics according to recent stimulus history. However, it is unclear how such a reactive process can benefit the organism. Here, we test the hypothesis that adaptation actually acts proactively in the sense that it optimally adjusts sensory encoding for future stimuli.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH).
A common problem when analyzing ancient DNA (aDNA) data is to identify the species which corresponds to the recovered aDNA sequence(s). The standard approach is to deploy sequence similarity based tools, such as BLAST. However, as aDNA reads may frequently stem from unsampled taxa due to extinction, it is likely that there is no exact match in any database.
View Article and Find Full Text PDFMol Biol Evol
January 2025
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
Southwest China is characterized by high plateaus, large mountain systems, and deeply incised dry valleys formed by major rivers and their tributaries. Despite the considerable attention given to alpine plant radiations in this region, the timing and mode of diversification of the numerous dry valley plant lineages remain unknown. To address this knowledge gap, we investigated the macroevolution of Isodon (Lamiaceae), a lineage commonly distributed in the dry valleys in southwest China and wetter areas of Asia and Africa.
View Article and Find Full Text PDFJ Anat
January 2025
Bonn Institute of Organismal Biology, Paleontology, University of Bonn, Bonn, Germany.
Current understanding of the histology of the dermoskeleton of tetrapods comes from fossilized and recent remains of skulls, osteoderms, carapace, plastron and other postcranial material which were always investigated using linear cross polarized light (LCPL) microscopy. The pectoral girdle of vast majority of non-amniote tetrapods, including temnospondyls evolved large ventrally located dermal bones- the interclavicle and a pair of clavicles. Despite that, there is a lack of information about the bone tissue structure from these postcranial dermal bones.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada.
The purpose was to assess whether visual feedback of torque contributes to motor unit (MU) firing rate reduction observed during post-activation potentiation (PAP) of skeletal muscle. From 15 participants 23 MUs were recorded with intramuscular fine-wire electrodes from the tibialis anterior during isometric dorsiflexion contractions at 20% of maximum, with and without both PAP and visual feedback of torque. A 5s maximal voluntary contraction (MVC) was used to induce PAP, and evoked twitch responses were assessed before and after.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!