Seed germination is the complex adaptive trait of higher plants influenced by a large number of genes and environmental factors. Numerous studies have been performed to better understand how germination is controlled by various environmental factors and applied chemicals, such as cyanide. However, still very little is known about the molecular mechanisms of how extrinsic signals regulate seed germination. Our and previous studies found that non-lethal cyanide treatment promotes seed germination, but the regulatory mechanism is unclear. In this study, we found that a low concentration of cyanide pretreatment significantly enhanced the expression of endo-β-mannanase 5 () gene in , and the mutation of this gene impaired cyanide-mediated seed germination. In contrast, overexpression of gene enhanced Arabidopsis seed germination ability under both normal and salt stress conditions. Further studies showed that the expression of the gene was negatively regulated by ABA insensitive 5 (ABI5); In mutant seeds, the expression of the gene was increased and the seed germination rate was accelerated. Additionally, cyanide pretreatment markedly reduced the gene expression of in Arabidopsis seeds. Taken together, our data support the involvement of as a key gene in cyanide-mediated seed germination and confirm the role of ABI5 as a critical negative factor involved in cyanide-regulated gene expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379673 | PMC |
http://dx.doi.org/10.3390/genes14071361 | DOI Listing |
Dev Cell
January 2025
Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Drought and salinity are significant environmental threats that cause hyperosmotic stress in plants, which respond with a transient elevation of cytosolic Ca and activation of Snf1-related protein kinase 2s (SnRK2s) and downstream responses. The exact regulators decoding Ca signals to activate downstream responses remained unclear. Here, we show that the calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to moderate osmotic stress and dehydration to activate SnRK2 phosphorylation in Arabidopsis.
View Article and Find Full Text PDFBraz J Biol
January 2025
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Núcleo de Ciências Biológicas e Ambientais, Sertão, RS, Brasil.
The shrub Rubus erythroclados Mart. ex Hook.f.
View Article and Find Full Text PDFWheat and barley serve as significant nutrient-rich staples that are extensively grown on a global scale, spanning over 219 million hectares. The annual combined global yield is 760.9 million tons, with Kazakhstan contributing 14.
View Article and Find Full Text PDFPhysiol Plant
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, China.
UDP-glycosyltransferases (UGTs) are the largest glycosyltransferase family developed during the evolution of the plant kingdom. However, their physiological significance in abiotic stress adaptation in land plants is largely unknown. In this study, we identified a UGT gene from Arabidopsis thaliana, UGT86A1, that was significantly induced by salt and drought stresses.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
The lipoxygenase (LOX) gene family is widely distributed in plants, and its activity is closely associated with seed viability and stress tolerance. In this study, we cloned the rice(Oryza sativa)lipoxygenase gene OsLOX1, a key participant in the 13-lipoxygenase metabolic pathway. Our primary focus was to investigate its role in mediating responses to drought stress and seed germination in rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!