A First Computational Frame for Recognizing Heparin-Binding Protein.

Diagnostics (Basel)

Key Laboratory of Computational Science and Application of Hainan Province, Haikou 571158, China.

Published: July 2023

Heparin-binding protein (HBP) is a cationic antibacterial protein derived from multinuclear neutrophils and an important biomarker of infectious diseases. The correct identification of HBP is of great significance to the study of infectious diseases. This work provides the first HBP recognition framework based on machine learning to accurately identify HBP. By using four sequence descriptors, HBP and non-HBP samples were represented by discrete numbers. By inputting these features into a support vector machine (SVM) and random forest (RF) algorithm and comparing the prediction performances of these methods on training data and independent test data, it is found that the SVM-based classifier has the greatest potential to identify HBP. The model could produce an auROC of 0.981 ± 0.028 on training data using 10-fold cross-validation and an overall accuracy of 95.0% on independent test data. As the first model for HBP recognition, it will provide some help for infectious diseases and stimulate further research in related fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377868PMC
http://dx.doi.org/10.3390/diagnostics13142465DOI Listing

Publication Analysis

Top Keywords

infectious diseases
12
heparin-binding protein
8
hbp recognition
8
identify hbp
8
training data
8
independent test
8
test data
8
hbp
7
computational frame
4
frame recognizing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!