The era of artificial intelligence (AI) has revolutionized our daily lives and AI has become a powerful force that is gradually transforming the field of medicine. Ophthalmology sits at the forefront of this transformation thanks to the effortless acquisition of an abundance of imaging modalities. There has been tremendous work in the field of AI for retinal diseases, with age-related macular degeneration being at the top of the most studied conditions. The purpose of the current systematic review was to identify and evaluate, in terms of strengths and limitations, the articles that apply AI to optical coherence tomography (OCT) images in order to predict the future evolution of age-related macular degeneration (AMD) during its natural history and after treatment in terms of OCT morphological structure and visual function. After a thorough search through seven databases up to 1 January 2022 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 1800 records were identified. After screening, 48 articles were selected for full-text retrieval and 19 articles were finally included. From these 19 articles, 4 articles concentrated on predicting the anti-VEGF requirement in neovascular AMD (nAMD), 4 articles focused on predicting anti-VEGF efficacy in nAMD patients, 3 articles predicted the conversion from early or intermediate AMD (iAMD) to nAMD, 1 article predicted the conversion from iAMD to geographic atrophy (GA), 1 article predicted the conversion from iAMD to both nAMD and GA, 3 articles predicted the future growth of GA and 3 articles predicted the future outcome for visual acuity (VA) after anti-VEGF treatment in nAMD patients. Since using AI methods to predict future changes in AMD is only in its initial phase, a systematic review provides the opportunity of setting the context of previous work in this area and can present a starting point for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378064PMC
http://dx.doi.org/10.3390/diagnostics13142464DOI Listing

Publication Analysis

Top Keywords

age-related macular
12
macular degeneration
12
systematic review
12
articles predicted
12
predicted conversion
12
articles
9
predict future
8
predicting anti-vegf
8
namd articles
8
namd patients
8

Similar Publications

Quercetin Alleviates All--Retinal-Induced Photoreceptor Apoptosis and Retinal Degeneration by Inhibiting the ER Stress-Related PERK Signaling.

Int J Mol Sci

December 2024

Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.

All--retinal (atRAL)-induced photoreceptor atrophy and retinal degeneration are hallmark features of dry age-related macular degeneration (AMD) and Stargardt disease type 1 (STGD1). The toxicity of atRAL is closely related to the generation of reactive oxygen species (ROS). Quercetin, a natural product, is known for its potent antioxidant properties; however, its effects in mitigating atRAL-mediated retinal damage remains unclear.

View Article and Find Full Text PDF

: Age-related macular degeneration (AMD) is the leading cause of blindness, affecting millions worldwide. Its pathogenesis involves the death of the retinal pigment epithelium (RPE), followed by photoreceptor degeneration. Although AMD is multifactorial, various genetic markers are strongly associated with the disease and may serve as biomarkers for evaluating treatment efficacy.

View Article and Find Full Text PDF

: Age-related macular degeneration (AMD) is the leading cause of low vision and legal blindness in adults in developed countries. Wet AMD can be successfully treated using vascular endothelial growth factor (VEGF) inhibitors; however, dry AMD currently has no effective treatment. The purpose of this study is to analyze the efficacy of intraocular injection of plasma rich in growth factors (PRGF) in an AMD mouse model induced by intraperitoneal administration of sodium iodate.

View Article and Find Full Text PDF

This review highlights the therapeutic potential of epigallocatechin gallate (EGCG) and forskolin in managing retinal diseases, with a focus on glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy. EGCG, a potent polyphenol from green tea, exhibits significant antioxidant, anti-inflammatory, and neuroprotective effects, making it a promising candidate for reducing oxidative stress and inflammation in ocular tissues. Forskolin, a diterpene from Coleus forskohlii, increases cyclic AMP (cAMP) levels, which helps lower intraocular pressure (IOP) and provides neuroprotection.

View Article and Find Full Text PDF

: Lesions characterized as complete retinal pigment epithelium and outer retinal atrophy (cRORA) are linked to the progression of intermediate age-related macular degeneration (iAMD). However, the extent of functional impairment of such precursor lesions remains uncertain. : In this cross-sectional study, 4 participants (mean age ± standard deviation: 71.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!