This study investigated the interfacial adsorption and emulsifying performance of glycated β-conglycinin (7S) with D-galactose (Gal) at various times. Results indicated that glycation increased the particle sizes and zeta potentials of glycated 7S by inducing subunit dissociation. Glycation destroyed the tertiary structures and transformed secondary structures from an ordered one to a disordered one, leading to the more flexible structures of glycated 7S compared with untreated 7S. All these results affected the structural unfolding and rearrangement of glycated 7S at the oil/water interface. Therefore, glycated 7S improved interfacial adsorption and formed an interfacial viscoelasticity layer, increasing emulsifying performance to stabilize high internal phase emulsions (HIPE) with self-supportive structures. Furthermore, the solid gel-like network of HIPE stabilized by glycated 7S led to emulsification stability. This result provided new ideas to improve the functional properties of plant proteins by changing the interfacial structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379661 | PMC |
http://dx.doi.org/10.3390/foods12142706 | DOI Listing |
Heliyon
January 2025
Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran.
An interface can be delicately designed using interactions between nanoparticles and surfactants by controlling surface properties such as activity and charge equilibrium. This study seeks to provide insights into how surfactant concentration impacts the stability and dynamics of nanoparticle-surfactant interfaces, with potential applications in material science and interface engineering. This study investigates the interactions between Graphene Function (Gr, Graphene function in this text refers to functionalizing the graphene sheets with -COOH groups via acidic reactions.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China. Electronic address:
Effects of enzymolysis by seven proteases (Alcalase, Bromelain, Flavourzyme, Papain, Pepsin, Protamex, and Trypsin) with distinct cleavage specificities on the emulsification performance of hempseed protein (HPI) and its correlation with the structural and interfacial characteristics were explored in this study. Upon enzymolysis, a remarkable decrease in α-helix and β-turn was observed in resultant hydrolysates (HPH), accompanied by a rise in β-sheet and random coil, notably by Alcalase, Bromelain, Papain, and Trypsin. Overall, proteolysis led to noticeable reductions in surface hydrophobicity and total sulfhydryls as well as a redshift in intrinsic fluorescence, with Papain showing the most pronounced effects, possibly due to its higher hydrolysis degree (4.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beijing Institute of Technology, Research Center of Materials Science, School of Materials Science and Engineering, No.5 South Street of Zhongguancun, Haidian District, 100081, Beijing, CHINA.
Copper (Cu)-based catalysts exhibit distinctive performance in the electrochemical CO2 reduction reaction (CO2RR) with complex mechanism and sophisticated types of products. The management of key intermediates *CO and *H is a necessary factor for achieving high product selectivity, but lack of efficient and versatile strategies. Herein, we designed Pt modified Cu catalysts to effectively modulate the competitive coverage of those intermediates.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China.
The objective of this study was to substitute partially fat with pea protein isolate (PP)/rutin (Ru) complexes to produce a healthy and stable low-fat whipped cream. Ru enhanced the foam properties of PP. The Ru binding equivalent was the best at a mass ratio of PP/Ru of 64:4, the PP/Ru complexes particle size was the smallest.
View Article and Find Full Text PDFLangmuir
January 2025
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
Herein, first, MIL-125 samples were synthesized via a hydrothermal method. Then, Ag species were doping on the surface of MIL-125 samples via the photolysis of silver nitrate. Finally, the Z-scheme MIL-125/Ag/BiOBr composite was synthesized via a directed liquid assembly method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!