AI Article Synopsis

  • The study explored the impact of adding calcium salts (0.25-1.00%) to noodles, focusing on their physicochemical properties.
  • Calcium citrate, calcium acetate, and calcium carbonate improved the pH and breaking strength of dried noodles, but did not affect the elongation of raw noodles.
  • Noodles with calcium citrate from oyster shells were found to be comparable to those made with commercial calcium citrate, suggesting that oyster shell-derived calcium citrate could be a beneficial ingredient for calcium-fortified noodles.

Article Abstract

This study examined the physicochemical effects of the fortification of noodles with 0.25-1.00% (/) calcium salts, viz. calcium acetate, calcium carbonate, calcium citrate, and calcium lactate. Fortification with calcium citrate, calcium acetate, and calcium carbonate increased the pH and breaking force of the dried noodles. However, the fortification of noodles with any concentration of calcium did not increase the extent of elongation of the control raw noodles. The L* and b* values of the raw and dried noodle color increased with increasing concentrations of calcium salts, except for noodles with added calcium citrate. Fortification with calcium citrate yielded no significant influence on color, texture, adhesiveness, springiness, flavor, and overall scores for cooked noodles. Noodles fortified with 0.5% calcium citrate made from oyster shells were compared with a control sample of noodles and noodles fortified with commercially available calcium citrate. The particle size of the calcium citrate made from oyster shells (258 nm) was smaller than that of the purchased calcium citrate (2631 nm). Noodles fortified with calcium citrate made from oyster shells showed no significantly difference compared to noodles fortified with commercially available calcium citrate. These results suggest that calcium citrate made from oyster shells may be used as the additive of choice for the manufacture of calcium-fortified noodles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379373PMC
http://dx.doi.org/10.3390/foods12142696DOI Listing

Publication Analysis

Top Keywords

calcium citrate
48
calcium
21
noodles fortified
20
citrate oyster
20
oyster shells
20
noodles
13
calcium salts
12
citrate
12
citrate calcium
12
fortification noodles
8

Similar Publications

Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.

View Article and Find Full Text PDF

Aggregated gold nanoparticles as photoactivators for the photopolymerization of proteins.

J Photochem Photobiol B

January 2025

Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA. Electronic address:

Photopolymerization of bovine serum albumin was carried out using reactive oxygen species (ROS) generated by the irradiation of citrate-stabilized gold nanoparticles by a pulsed Nd:YAG laser. The ROS in this case, singlet oxygen (O), targets aromatic amino acids within the protein to induce photopolymerization or crosslinking. Other ROS, like the hydroxyl radical, can also form in solution and under high-energy irradiation.

View Article and Find Full Text PDF

Urolithiasis is a multifactorial condition where stone composition is critical in guiding treatment and prevention strategies. Advanced diagnostic techniques, such as infrared spectroscopy, provide precise stone analysis, enabling clinicians to tailor interventions based on specific stone types and associated metabolic abnormalities. Calcium oxalate monohydrate stones often require invasive approaches like percutaneous nephrolithotomy, while uric acid responds well to dissolution therapy.

View Article and Find Full Text PDF

Pediatric Nephrolithiasis: A Changing Landscape Through Time and Space.

Medicina (Kaunas)

December 2024

Pediatric Unit, Department of Surgical Sciences, Destiny, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy.

Pediatric nephrolithiasis is an ancient and complex disorder that has seen a significant rise in recent decades and the underlying causes contributing to stone formation in children may also be shifting. Historically, kidney stones have been linked to factors such as metabolic disorders, congenital abnormalities, and family history. However, the recent increase in incidence appears to be associated with new risk factors, including changes in lifestyle and diet, the growing prevalence of obesity, metabolic syndrome, diabetes, and even climate change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!