Metabolism and Chemical Degradation of New Antidiabetic Drugs (Part II): A Review of Analytical Approaches for Analysis of Gliptins.

Biomedicines

Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.

Published: July 2023

This paper is part II of the review on metabolism and chemical degradation of new antidiabetic drugs from glutides, gliflozins and gliptins. It is well known that metabolism data can be helpful for deriving safe levels of degradation impurities and their qualifying as far as toxicological aspects are concerned. As a result, it could link the quality of respective pharmaceutical products to clinical practice and patients. Some overlapping pathways of transformations of these important drugs of different chemical structures and different mechanisms of action were discussed. At the same time, the paper summarized interesting analytical tools for conducting modern drug metabolism as well as drug degradation experiments. The methods described here include liquid chromatography (LC) and liquid chromatography coupled with mass spectrometry (LC-MS or LC-MS/MS), which are widely used for detection and quantitative measurements of the drugs, their metabolites and degradants, as well as radiometric methods that are suitable for pharmacokinetic experiments. Special attention was paid to dedicated types of packing in chromatographic columns, as well as to special solutions in the LC-MS procedures. The present part addresses the analytical approaches elaborated for examining the metabolism and degradation pathways of gliptins that are dipeptidyl peptidase 4 (DPP-4) inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377395PMC
http://dx.doi.org/10.3390/biomedicines11071956DOI Listing

Publication Analysis

Top Keywords

metabolism chemical
8
chemical degradation
8
degradation antidiabetic
8
antidiabetic drugs
8
analytical approaches
8
liquid chromatography
8
metabolism
5
degradation
5
drugs
4
drugs review
4

Similar Publications

Discovery of a heparan sulfate binding domain in monkeypox virus H3 as an anti-poxviral drug target combining AI and MD simulations.

Elife

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding.

View Article and Find Full Text PDF

The inhibition of human microsomal prostaglandin E (PGE) synthase-1 (mPGES-1) is a promising therapeutic modality for developing next-generation anti-inflammatory medications. In this study, we present novel 2-phenylbenzothiazole derivatives featuring heteroaryl sulfonamide end-capping substructures as inhibitors of human mPGES-1, with IC values in the range of 0.72-3.

View Article and Find Full Text PDF

Background And Aim: Discriminating between idiosyncratic drug-induced liver injury (DILI) and autoimmune hepatitis (AIH) is critical yet challenging. We aim to develop and validate a machine learning (ML)-based model to aid in this differentiation.

Methods: This multicenter cohort study utilised a development set from Beijing Friendship Hospital, with retrospective and prospective validation sets from 10 tertiary hospitals across various regions of China spanning January 2009 to May 2023.

View Article and Find Full Text PDF

Phosphatidylethanolamine (PE) is a ubiquitous lipid species in higher eukaryotes. Here, we synthesized a multifunctionalized PE derivative (1) designed to identify PE-binding proteins in intact cells through photo-crosslinking and subsequent isolation and proteomic analysis of the PE-protein conjugates. We show that the tool is also useful for tracking PE translocation to mitochondria after uncaging.

View Article and Find Full Text PDF

Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).

Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!