Breast cancer is one of the most common types of cancer in women worldwide, and its incidence is increasing. Diet has been identified as a modifiable risk factor for breast cancer, but the complex interplay between diet, metabolism, and cancer development is not fully understood. Nutritional metabolomics is a rapidly evolving field that can provide insights into the metabolic changes associated with dietary factors and their impact on breast cancer risk. The review's objective is to provide a comprehensive overview of the current research on the application of nutritional metabolomics in understanding the relationship between diet and breast cancer. The search strategy involved querying several electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar. The search terms included combinations of relevant keywords such as "nutritional metabolomics", "diet", "breast cancer", "metabolites", and "biomarkers". In this review, both in vivo and in vitro studies were included, and we summarize the current state of knowledge on the role of nutritional metabolomics in understanding the diet-breast cancer relationship, including identifying specific metabolites and metabolic pathways associated with breast cancer risk. We also discuss the challenges associated with nutritional metabolomics research, including standardization of analytical methods, interpretation of complex data, and integration of multiple-omics approaches. Finally, we highlight future directions for nutritional metabolomics research in studying diet-breast cancer relations, including investigating the role of gut microbiota and integrating multiple-omics approaches. The application of nutritional metabolomics in the study of diet-breast cancer relations, including 2-amino-4-cyano butanoic acid, piperine, caprate, rosten-3β,17β-diol-monosulfate, and γ-carboxyethyl hydrochroman, among others, holds great promise for advancing our understanding of the role of diet in breast cancer development and identifying personalized dietary recommendations for breast cancer prevention, control, and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377267PMC
http://dx.doi.org/10.3390/biomedicines11071845DOI Listing

Publication Analysis

Top Keywords

nutritional metabolomics
28
breast cancer
28
diet-breast cancer
16
cancer
13
cancer relations
12
cancer development
8
cancer risk
8
application nutritional
8
metabolomics understanding
8
diet breast
8

Similar Publications

Transcriptional engineering for value enhancement of oilseed crops: a forward perspective.

Front Genome Ed

January 2025

Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India.

Plant-derived oils provide 20%-35% of dietary calories and are a primary source of essential omega-6 (linoleic) and omega-3 (α-linolenic) fatty acids. While traditional breeding has significantly increased yields in key oilseed crops like soybean, sunflower, canola, peanut, and cottonseed, overall gains have plateaued over the past few decades. Oilseed crops also experience substantial yield losses in both prime and marginal agricultural areas due to biotic and abiotic stresses and shifting agro-climates.

View Article and Find Full Text PDF

Environmental conditions significantly influence the metabolic composition and quality attributes of fruits. This study investigated the impact of altitude-associated environmental variation on flavonoid profiles and fruit quality parameters by comparing the "Red Face" strawberry variety grown in two distinct locations: high-altitude-associated environmental conditions in Zhaotong and low-altitude conditions in Dandong. Using LC-MS/MS analysis, we identified 163 bioactive flavonoids, comprising 85 flavonols, 37 flavanones, 33 flavones, and 8 flavanonols.

View Article and Find Full Text PDF

Background: The carcinogenesis mechanism of early-stage lung cancer (ESLC) remains unclear. Microbial dysbiosis is closely related to tumor development. This study aimed to analyze the relationship between microbiota dysbiosis in ESLC.

View Article and Find Full Text PDF

Unveiling the Origin of Copper Accumulation in Plasma with Aging.

Environ Health (Wash)

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Aging is intricately linked to various diseases including cancers, neurodegenerative disorders, and metabolic irregularities. Copper (Cu) overexposure has been found to be linked to many diseases during aging, particularly neurodegenerative diseases. Meanwhile, as an essential element, Cu has been implicated in key processes associated with aging, raising questions about its role in age-related health issues.

View Article and Find Full Text PDF

Symbiotic cnidarians, such as sea anemones and corals, rely on their mutualistic microalgal partners (Symbiodiniaceae) for survival. Marine heatwaves can disrupt this partnership, and it has been proposed that introducing experimentally evolved, heat-tolerant algal symbionts could enhance host thermotolerance. To test this hypothesis, the sea anemone Exaiptasia diaphana (a coral model) was inoculated with either the heterologous wild type or heat-evolved algal symbiont, Cladocopium proliferum, and homologous wild-type Breviolum minutum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!