Recent studies have confirmed that lung microvascular endothelial injury plays a critical role in the pathophysiology of COVID-19. Our group and others have demonstrated the beneficial effects of HS in several pathological processes and provided a rationale for considering the therapeutic implications of HS in COVID-19 therapy. Here, we evaluated the effect of the slow-releasing HS donor, GYY4137, on the barrier function of a lung endothelial cell monolayer in vitro, after challenging the cells with plasma samples from COVID-19 patients or inactivated SARS-CoV-2 virus. We also assessed how the cytokine/chemokine profile of patients' plasma, endothelial barrier permeability, and disease severity correlated with each other. Alterations in barrier permeability after treatments with patient plasma, inactivated virus, and GYY4137 were monitored and assessed by electrical impedance measurements in real time. We present evidence that GYY4137 treatment reduced endothelial barrier permeability after plasma challenge and completely reversed the endothelial barrier disruption caused by inactivated SARS-CoV-2 virus. We also showed that disease severity correlated with the cytokine/chemokine profile of the plasma but not with barrier permeability changes in our assay. Overall, these data demonstrate that treatment with HS-releasing compounds has the potential to ameliorate SARS-CoV-2-associated lung endothelial barrier disruption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376201PMC
http://dx.doi.org/10.3390/biomedicines11071790DOI Listing

Publication Analysis

Top Keywords

endothelial barrier
20
barrier permeability
16
lung endothelial
12
barrier disruption
12
sars-cov-2-associated lung
8
barrier
8
inactivated sars-cov-2
8
sars-cov-2 virus
8
cytokine/chemokine profile
8
disease severity
8

Similar Publications

Oral Biomimetic Nanotherapeutics for Ulcerative Colitis Targeted Treatment by Repairing Intestinal Epithelial Barrier and Restoring Redox Homeostasis.

ACS Appl Mater Interfaces

January 2025

Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.

The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.

View Article and Find Full Text PDF

A 3D Model of the Human Lung Airway for Evaluating Permeability of Inhaled Drugs.

ACS Pharmacol Transl Sci

January 2025

Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States.

Current in vitro cell-based methods, relying on single cell types, have structural and functional limitations in determining lung drug permeability, which is a contributing factor affecting both local and systemic drug levels. To address this issue, we investigated a 3D human lung airway model generated using a cell culture insert, wherein primary human lung epithelial and endothelial cells were cocultured at an air-liquid interface (ALI). To ensure that the cell culture mimics the physiological and functional characteristics of airway tissue, the model was characterized by evaluating several parameters such as cellular confluency, ciliation, tight junctions, mucus-layer formation, transepithelial electrical resistance, and barrier function through assaying fluorescein isothiocyanate-dextran permeability.

View Article and Find Full Text PDF

Lung endothelial cell senescence impairs barrier function and promotes neutrophil adhesion and migration.

Geroscience

January 2025

Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, USA.

Cellular senescence contributes to inflammation and organ dysfunction during aging. While this process is generally characterized by irreversible cell cycle arrest, its morphological features and functional impacts vary in different cells from various organs. In this study, we examined the expression of multiple senescent markers in the lungs of young and aged humans and mice, as well as in mouse lung endothelial cells cultured with a senescence inducer, suberoylanilide hydroxamic acid (SAHA), or doxorubicin (DOXO).

View Article and Find Full Text PDF

1,8-Cineole reduces pulmonary vascular remodelling in pulmonary arterial hypertension by restoring intercellular communication and inhibiting angiogenesis.

Phytomedicine

December 2024

Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, Coimbra 3000-548, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.

Background: Pulmonary Arterial Hypertension (PAH) is characterized by pulmonary vascular remodelling, often associated with disruption of BMPR2/Smad1/5 and BMPR2/PPAR-γ signalling pathways that ultimately lead to right ventricle failure. Disruption of intercellular junctions and communication and a pro-angiogenic environment are also characteristic features of PAH. Although, current therapies improve pulmonary vascular tone, they fail to tackle other key pathological features that could prevent disease progression.

View Article and Find Full Text PDF

Protection of liver sinusoidal endothelial cells using different preservation solutions.

Vasc Biol

January 2025

J van Buul, Medical Biochemistry, Amsterdam UMC Locatie AMC, Amsterdam, 1105 AZ, Netherlands.

Objective: Donor liver preservation methods and solutions have evolved over the last years. Liver sinusoidal endothelial cell (LSEC) barrier function and integrity during preservation is crucial for outcomes of liver transplantation. Therefore, the present study aimed to determine optimal preservation of LSEC barrier function and integrity, using different preservation solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!