Decursinol Angelate Inhibits Glutamate Dehydrogenase 1 Activity and Induces Intrinsic Apoptosis in MDR-CRC Cells.

Cancers (Basel)

Department of Biotechnology, Daegu University, Gyeongsan 38453, Republic of Korea.

Published: July 2023

Colorectal cancer (CRC) was the second most commonly diagnosed cancer worldwide and the second most common cause of cancer-related deaths in Europe in 2020. After CRC patients' recovery, in many cases a patient's tumor returns and develops chemoresistance, which has remained a major challenge worldwide. We previously published our novel findings on the role of DA in inhibiting the activity of GDH1 using in silico and enzymatic assays. No studies have been conducted so far to explain the inhibitory role of DA against glutamate dehydrogenase in MDR-CRC cells. We developed a multidrug-resistant colorectal cancer cell line, HCT-116, after treatment with cisplatin and 5-fluorouracil. We confirmed the MDR phenotype by evaluating the expression of MDR1, ABCB5, extracellular vesicles, polyploidy, DNA damage response markers and GDH1 in comparison with parental HCT-116 (HCT-116 wild type). Following confirmation, we determined the IC and performed clonogenic assay for the efficacy of decursinol angelate (DA) against HCT-116 (HCT-116 multidrug resistant). Subsequently, we evaluated the novel interactions of DA with GDH1 and the expression of important markers regulating redox homeostasis and cell death. DA treatment markedly downregulated the expression of GDH1 at 50 and 75 μM after 36 h, which directly correlated with reduced expression of the Krebs cycle metabolites α-ketoglutarate and fumarate. We also observed a systematic dose-dependent downregulation of MDR1, ABCB5, TERT, ERCC1 and γH2AX. Similarly, the expression of important antioxidant markers was also downregulated. The markers for intrinsic apoptosis were notably upregulated in a dose-dependent manner. The results were further validated by flow cytometry and TUNEL assay. Additionally, GDH1 knockdown on both HCT-116 and HCT-116 corresponded to a decreased expression of γH2AX, catalase, SOD1 and Gpx-1, and an eventual increase in apoptosis markers. In conclusion, inhibition of GDH1 increased ROS production, decreased cell proliferation and increased cell death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377166PMC
http://dx.doi.org/10.3390/cancers15143541DOI Listing

Publication Analysis

Top Keywords

hct-116 hct-116
12
decursinol angelate
8
glutamate dehydrogenase
8
intrinsic apoptosis
8
mdr-crc cells
8
colorectal cancer
8
mdr1 abcb5
8
cell death
8
hct-116
7
gdh1
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!