Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Research into molecular mechanisms of self-incompatibility (SI) in plants can be observed in representatives of various families, including Solanaceae. Earlier studies of the mechanisms of S-RNase-based SI in petunia ( E. Vilm.) demonstrate that programmed cell death (PCD) is an SI factor. These studies suggest that the phytohormon cytokinin (CK) is putative activator of caspase-like proteases (CLPs). In this work, data confirming this hypothesis were obtained in two model objects-petunia and tomato (six Solanaceae representatives). The exogenous zeatin treatment of tomato and petunia stigmas before a compatible pollination activates CLPs in the pollen tubes in vivo, as shown via the intravital imaging of CLP activities. CK at any concentration slows down the germination and growth of petunia and tomato male gametophytes both in vitro and in vivo; shifts the pH of the cytoplasm (PHc) to the acid region, thereby creating the optimal conditions for CLP to function and inhibiting the F-actin formation and/or destructing the cytoskeleton in pollen tubes to point foci during SI-induced PCD; and accumulates in style tissues during SI response. The activity of the (IPT5) gene at this moment exceeds its activity in a cross-compatible pollination, and the levels of expression of the and genes () are significantly lower in self-incompatible pollination. All this suggests that CK plays a decisive role in the mechanism underlying SI-induced PCD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377171 | PMC |
http://dx.doi.org/10.3390/biom13071033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!