Early brain injury (EBI) subsequent to subarachnoid hemorrhage (SAH) is strongly associated with delayed cerebral ischemia and poor patient prognosis. Based on investigations into the molecular mechanisms underlying EBI, neurovascular dysfunction resulting from SAH can be attributed to a range of pathological processes, such as microvascular alterations in brain tissue, ionic imbalances, blood-brain barrier disruption, immune-inflammatory responses, oxidative stress, and activation of cell death pathways. Research progress presents a variety of promising therapeutic approaches for the preservation of neurological function following SAH, including calcium channel antagonists, endothelin-1 receptor blockers, antiplatelet agents, anti-inflammatory agents, and anti-oxidative stress agents. EBI can be mitigated following SAH through neuroprotective measures. To enhance our comprehension of the relevant molecular pathways involved in brain injury, including brain ischemia-hypoxic injury, neuroimmune inflammation activation, and the activation of various cell-signaling pathways, following SAH, it is essential to investigate the evolution of these multifaceted pathophysiological processes. Facilitating neural repair following a brain injury is critical for improving patient survival rates and quality of life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376973 | PMC |
http://dx.doi.org/10.3390/brainsci13071083 | DOI Listing |
Alzheimers Dement
December 2024
Case Western Reserve University, Cleveland, OH, USA.
Background: Traumatic Brain Injury (TBI) is one of the most common nonheritable causes of Alzheimer's disease (AD). However, there is lack of effective treatment for both AD and TBI. We posit that network-based integration of multi-omics and endophenotype disease module coupled with large real-world patient data analysis of electronic health records (EHR) can help identify repurposable drug candidates for the treatment of TBI and AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA; NYU, New York City, NY, USA.
Background: Astrocytes, a major glial cell in the central nervous system (CNS), can become reactive in response to inflammation or injury, and release toxic factors that kill specific subtypes of neurons. Over the past several decades, many groups report that reactive astrocytes are present in the brains of patients with Alzheimer's disease, as well as several other neurodegenerative diseases. In addition, reactive astrocyte sub-types most associated with these diseases are now reported to be present during CNS cancers of several types.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Xuanwu Hospital of Capital Medical University, Beijing, Beijing, China.
Background: Cerebral small vessel disease (CSVD) is one of the most common nervous system diseases. Hypertension and neuroinflammation are considered important risk factors for the development of CSVD and white matter (WM) lesions.
Method: We used the spontaneously hypertensive rat (SHR) as a model of early-onset CSVD and administered epimedium flavonoids (EF) for three months.
Background: Neuroinflammation is a critical factor of Alzheimer's Disease (AD). Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury. This is likely of particular relevance in the brain where inflammation is poorly tolerated and brain cells are vulnerable to direct damage by complement.
View Article and Find Full Text PDFBackground: In the brain as in other organs, complement contributes to immune defence and housekeeping to maintain homeostasis. Sources of complement may include local production by brain cells and influx from the periphery, the latter severely restricted by the blood brain barrier (BBB) in healthy brain. Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!