Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spinocerebellar ataxia 38 (SCA 38) is a rare autosomal neurological disease whose clinical features include, among others, severe gait disturbances that have not yet been fully characterized. In this study, we employed a computerized 3D gait analysis to obtain spatio-temporal parameters of gait and the kinematics in the sagittal plane in the hip, knee, and ankle joints of seven individuals with SCA 38, which were then compared with those of twenty unaffected individuals matched for age, sex, and anthropometric features. The results show that, in comparison with unaffected individuals, those with SCA 38 are characterized by a significantly reduced speed, stride length, and duration of the swing phase, as well as an increased step width and stance and double support phase durations. The point-by-point comparison of the angular trends at the hip, knee, and ankle joints revealed significant alterations during most part of the stance phase for hip joint and at pre-swing/swing phases for knee and ankle joints. For these latter joints, a significantly reduced dynamic range of motion was also found. Such findings provide some new insights into hip and knee kinematics for this specific form of ataxia and may be useful for monitoring the disease's progression and designing specific, tailored rehabilitative interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376738 | PMC |
http://dx.doi.org/10.3390/bioengineering10070788 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!