Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tissue engineering has the advantage of replicating soft tissue mechanics to better simulate and integrate into native soft tissue. However, soft tissue engineering has been fraught with issues of insufficient tissue strength to withstand physiological mechanical requirements. This factor is due to the lack of strength inherent in cell-only constructs and in the biomaterials used for soft tissue engineering and limited extracellular matrix (ECM) production possible in cell culture. To address this issue, we explored the use of an ECM-based hydrogel coating to serve as an adhesive tool, as demonstrated in vascular tissue engineering. The efficacy of cells to supplement mechanical strength in the coating was explored. Specifically, selected coatings were applied to an engineered artery tunica adventitia to accurately test their properties in a natural tissue support structure. Multiple iterations of three primary hydrogels with and without cells were tested: fibrin, collagen, and gelatin hydrogels with and without fibroblasts. The effectiveness of a natural crosslinker to further stabilize and strengthen the hydrogels was investigated, namely genipin extracted from the gardenia fruit. We found that gelatin crosslinked with genipin alone exhibited the highest tensile strength; however, fibrin gel supported cell viability the most. Overall, fibrin gel coating without genipin was deemed optimal for its balance in increasing mechanical strength while still supporting cell viability and was used in the final mechanical and hydrodynamic testing assessments. Engineered vessels coated in fibrin hydrogel with cells resulted in the highest tensile strength of all hydrogel-coated groups after 14 d in culture, demonstrating a tensile strength of 11.9 ± 2.91 kPa, compared to 5.67 ± 1.37 kPa for the next highest collagen hydrogel group. The effect of the fibrin hydrogel coating on burst pressure was tested on our strongest vessels composed of human aortic smooth muscle cells. A significant increase from our previously reported burst pressure of 51.3 ± 2.19 mmHg to 229 ± 23.8 mmHg was observed; however, more work is needed to render these vessels compliant with mechanical and biological criteria for blood vessel substitutes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376319 | PMC |
http://dx.doi.org/10.3390/bioengineering10070780 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!