Spinal cord injury (SCI) is a condition that affects between 8.8 and 246 people in a million and, unlike many other neurological disorders, it affects mostly young people, causing deficits in sensory, motor, and autonomic functions. Promoting the regrowth of axons is one of the most important goals for the neurological recovery of patients after SCI, but it is also one of the most challenging goals. A key event after SCI is the formation of a glial scar around the lesion core, mainly comprised of astrocytes, NG2-glia, and microglia. Traditionally, the glial scar has been regarded as detrimental to recovery because it may act as a physical barrier to axon regrowth and release various inhibitory factors. However, more and more evidence now suggests that the glial scar is beneficial for the surrounding spared tissue after SCI. Here, we review experimental studies that used genetic and pharmacological approaches to ablate specific populations of glial cells in rodent models of SCI in order to understand their functional role. The studies showed that ablation of either astrocytes, NG2-glia, or microglia might result in disorganization of the glial scar, increased inflammation, extended tissue degeneration, and impaired recovery after SCI. Hence, glial cells and glial scars appear as important beneficial players after SCI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377788 | PMC |
http://dx.doi.org/10.3390/cells12141842 | DOI Listing |
Rationale: WW domain-containing oxidoreductase ( ) is a gene associated implicated in both neurologic and inflammatory diseases and is susceptible to environmental stressors. We hypothesize partial loss of Wwox function will result in increased sepsis severity and neuroinflammation.
Methods: mice, generated by CRISPR/Cas9, and mice were treated with intraperitoneal PBS vs LPS (10mg/kg) and euthanized 12 hours post-injection.
J Alzheimers Dis
January 2025
School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
SPI1, a transcription factor implicated in myeloid cell development, has emerged as a genetic risk factor for Alzheimer's disease (AD). Recent in vivo studies reveal that knockdown in mice exacerbates AD pathology by increasing amyloid-β aggregation and gliosis while overexpression ameliorates these features. Transcriptomic analyses suggest that regulates microglial immune response, complement activation, and phagocytosis.
View Article and Find Full Text PDFNeuroimage
January 2025
High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
Objectives: To assess topographical patterns of metabolic abnormalities in the cerebrum of multiple sclerosis (MS) patients and their relationship to clinical disability using rapid echo-less 3D-MR spectroscopic imaging (MRSI) at 7T.
Materials And Methods: This study included 26 MS patients (13 women; median age 34) and 13 age- and sex-matched healthy controls (7 women; median age 33). Metabolic maps were obtained using echo-less 3D-MRSI at 7T with a 64 × 64 × 33 matrix and a nominal voxel size of 3.
J Neuropathol Exp Neurol
January 2025
Department of Biological Sciences, Delaware State University, Dover, DE, United States.
Trans-active response DNA-binding protein-43 (TDP-43) is the major pathological protein in motor neuron disease and TDP-43 pathology has been described in the brains of up to 50% of patients with Alzheimer disease (AD). Hippocampal sclerosis of aging (HS-A), an age-related neuropathology characterized by severe neuronal loss and gliosis in CA1 and/or subiculum, is found in ∼80% of cases that are positive for phosphorylated TDP-43. HS-A is seen as a co-pathology in cases with AD, limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC), and frontotemporal degeneration.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Republic of Korea.
Ischemic stroke, caused by blocked cerebral blood flow, requires prompt intervention to prevent severe motor and cognitive impairments. Despite extensive drug development efforts, the failure rate of clinical trials remains high, highlighting the need for novel therapeutic approaches. This study investigated the therapeutic potential of a natural herbal extract mixture of Bunge (AM) and Georgi (SB), traditionally used in Eastern Asian herbal medicine (EAHM) for ischemic stroke treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!