Predictive models based on empirical similarity are instrumental in biology and data science, where the premise is to measure the likeness of one observation with others in the same dataset. Biological datasets often encompass data that can be categorized. When using empirical similarity-based predictive models, two strategies for handling categorical covariates exist. The first strategy retains categorical covariates in their original form, applying distance measures and allocating weights to each covariate. In contrast, the second strategy creates binary variables, representing each variable level independently, and computes similarity measures solely through the Euclidean distance. This study performs a sensitivity analysis of these two strategies using computational simulations, and applies the results to a biological context. We use a linear regression model as a reference point, and consider two methods for estimating the model parameters, alongside exponential and fractional inverse similarity functions. The sensitivity is evaluated by determining the coefficient of variation of the parameter estimators across the three models as a measure of relative variability. Our results suggest that the first strategy excels over the second one in effectively dealing with categorical variables, and offers greater parsimony due to the use of fewer parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376039PMC
http://dx.doi.org/10.3390/biology12070959DOI Listing

Publication Analysis

Top Keywords

predictive models
12
similarity-based predictive
8
sensitivity analysis
8
categorical covariates
8
models
4
models sensitivity
4
analysis biological
4
biological application
4
application multi-attributes
4
multi-attributes predictive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!