Flooding duration and sediment texture play vital roles in the growth and adaptation of wetland plants. However, there is a lack of research on the interactive effects of flooding duration and sediments on wetland plants. A two-factor experiment with flooding duration and sediment texture was designed in the study, involving three plant species commonly found in the Poyang Lake wetland (i.e., , , and ). Our findings were as follows: (i) Sediments play a crucial role in the growth and adaptation of hygrophilous plants, but they exhibited a weaker effect than flooding. (ii) Sediment texture mediates flooding to affect the stressing responses of wetland plant functional traits, including the leaf chlorophyll content, the plant height, and the number of leaves and ramets. (iii) Sediment texture forms interactive effects with flooding duration and directly influences hygrophilous plants. The results of this study help provide theoretical insights from a more scientific perspective for the prediction of hygrophilous plant dynamics and to facilitate the formulation of wetland management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376433 | PMC |
http://dx.doi.org/10.3390/biology12070944 | DOI Listing |
Plant Physiol Biochem
January 2025
Botany Department, Federal University of Pelotas, Capão Do Leão, RS, 96160-000, Brazil.
Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance.
View Article and Find Full Text PDFEcol Appl
January 2025
Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, The Netherlands.
Tidal marshes can contribute to nature-based shoreline protection by reducing the wave load onto the shore and reducing the erosion of the sediment bed. To implement such nature-based shoreline erosion protection requires the ability to quickly restore or create highly stable and erosion-resistant tidal marshes at places where they currently do not yet occur. Therefore, we aim to identify the drivers controlling the rate by which sediment stability builds up in young pioneer marshes.
View Article and Find Full Text PDFSci Total Environ
January 2025
Guangzhou Huadu district drainage management center, Guangzhou 510800, China.
Rapid urbanization has significantly altered surface landscape configurations, leading to complex urban climates. While much attention has been focused on impervious surfaces' impact on extreme precipitation, a critical gap remains in understanding how various 2D urban landscape components influence extreme precipitation across different durations. Through an analysis of the non-stationarity and spatiotemporal variations in extreme precipitation across the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) from 1990 to 2020, we constructed the non-stationary Generalized Additive Models for Location Scale and Shape (GAMLSS) model by introducing six urban landscape structural metrics as explanatory variables for each of the 27 meteorological stations in the GBA.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
July 2024
Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China.
Acute stress disorder (ASD) is a transient psychiatric disorder that may arise subsequent to abrupt, extreme trauma exposure, and serves as a reliable indicator for the subsequent development of posttraumatic stress disorder (PTSD) (Bryant, 2011; Battle, 2013). It exhibits rapid progression in the aftermath of trauma and persists for a duration of days or weeks (not exceeding one month), manifesting symptoms of dissociation, re-experiencing, avoidance, and hyperarousal (Bielas et al., 2018).
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Environment, Florida International University, Miami, FL, 33199, USA.
Variability in space use among conspecifics can emerge from foraging strategies that track available resources, especially in riverscapes that promote high synchrony between prey pulses and consumers. Projected changes in riverscape hydrological regimes due to water management and climate change accentuate the need to understand the natural variability in animal space use and its implications for population dynamics and ecosystem function. Here, we used long-term tracking of Common Snook (Centropomus undecimalis) movement and trophic dynamics in the Shark River, Everglades National Park from 2012 to 2023 to test how specialization in the space use of individuals (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!