Sperm proteins play vital roles in improving sperm freezing resilience in domestic animals. However, it remains poorly defined which proteins regulate the freezing resilience of spermatozoa in rams (). Here, we compared the proteome of ram sperm with a high cryopreservation recovery ratio (HCR) with that of ram sperm with a low cryopreservation recovery ratio (LCR) using a tandem mass tag-based quantitative proteomics approach. Bioinformatic analysis was performed to evaluate differentially expressed proteins (DEPs). A total of 2464 proteins were identified, and 184 DEPs were screened. Seventy-two proteins were higher in the LCR group. One hundred and twelve proteins were more abundant in the HCR group, and they were mainly involved in the regulation of oxidative phosphorylation and thermogenesis pathways. Proteins in high abundance in the HCR group included the S100A family, such as S100A8, S100A9, S100A14, and S100A16, effectively controlling for CA and maintaining flagella structure; HYOU1 and PRDX1, which participate in antioxidant protection and anti-apoptosis to prevent cell death; and HSP90B1, which maintains cell activity and immune response. Our results could help illuminate the molecular mechanisms underlying cryopreservation of ram semen and expand the potential direction of cryopreservation of high-quality semen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376853PMC
http://dx.doi.org/10.3390/ani13142368DOI Listing

Publication Analysis

Top Keywords

cryopreservation recovery
12
recovery ratio
12
tandem mass
8
quantitative proteomics
8
proteomics approach
8
freezing resilience
8
ram sperm
8
hcr group
8
proteins
7
cryopreservation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!