The prenatal environment is recognized as crucial for the postnatal performance in cattle. In tropical regions, pregnant beef cows commonly experience nutritional restriction during the second half of the gestation period. Thus, the present study was designed to analyze the genotype by prenatal environment interaction (G × Epn) and to identify genomic regions associated with the level and response in growth and reproduction-related traits of beef cattle to changes in the prenatal environment. A reaction norm model was applied to data from two Nelore herds using the solutions of contemporary groups for birth weight as a descriptor variable of the gestational environment quality. A better gestational environment favored weights until weaning, scrotal circumference at yearling, and days to first calving of the offspring. The G × Epn was strong enough to result in heterogeneity of variance components and genetic parameters in addition to reranking of estimated breeding values and SNPs effects. Several genomic regions associated with the level of performance and specific responses of the animals to variations in the gestational environment were revealed, which harbor QTLs and can be exploited for selection purposes. Therefore, genetic evaluation models considering G × Epn and special management and nutrition care for pregnant cows are recommended.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376603PMC
http://dx.doi.org/10.3390/ani13142321DOI Listing

Publication Analysis

Top Keywords

prenatal environment
16
gestational environment
12
genotype prenatal
8
environment interaction
8
beef cattle
8
genomic regions
8
regions associated
8
associated level
8
environment
7
interaction postnatal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!