NADPH oxidase (NOX2) is responsible for reactive oxygen species (ROS) production in neutrophils and has been recognized as a key mediator in inflammatory and cardiovascular pathologies. Nevertheless, there is a lack of specific NOX2 pharmacological inhibitors. In medicinal chemistry, heterocyclic compounds are essential scaffolds for drug design, and among them, indole is a very versatile pharmacophore. We tested the hypothesis that indole heteroaryl-acrylonitrile derivatives may serve as NOX2 inhibitors by evaluating the capacity of 19 of these molecules to inhibit NOX2-derived ROS production in human neutrophils (HL-60 cells). Of these compounds, and exhibited concentration-dependent inhibition of NOX2 (IC~1 µM). These molecules also reduced NOX2-derived oxidative stress in cardiomyocytes and prevented cardiac damage induced by ischemia-reperfusion. Compound significantly reduced the membrane translocation of p47, a cytosolic subunit that is required for NOX2 activation. Molecular docking analyses of the binding modes of these molecules with p47 indicated that and interact with specific residues in the inner part of the groove of p47, the binding cavity for p22. This combination of methods showed that novel indole heteroaryl acrylonitriles represent interesting lead compounds for developing specific and potent NOX2 inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376059 | PMC |
http://dx.doi.org/10.3390/antiox12071441 | DOI Listing |
Plant Cell Environ
January 2025
Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China.
Symbiosis between arbuscular mycorrhizal fungi and plants plays a crucial role in nutrient acquisition and stress resistance for terrestrial plants. microRNAs have been reported to participate in the regulation of mycorrhizal symbiosis by controlling the expression of their target genes. Herein, we found that sly-miR408b was significantly downregulated in response to mycorrhizal colonisation.
View Article and Find Full Text PDFNat Immunol
January 2025
Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
Hematopoietic stem cells must mitigate myriad stressors throughout their lifetime to ensure normal blood cell generation. Here, we uncover unfolded protein response stress sensor inositol-requiring enzyme-1α (IRE1α) signaling in hematopoietic stem and progenitor cells (HSPCs) as a safeguard against myeloid leukemogenesis. Activated in part by an NADPH oxidase-2 mechanism, IRE1α-induced X-box binding protein-1 (XBP1) mediated repression of pro-leukemogenic programs exemplified by the Wnt-β-catenin pathway.
View Article and Find Full Text PDFBackground: Senile dementia (SD) is a deteriorative organic brain disorder and it comprises Alzheimer's disease (AD) as a major variant. SD is shown impairment of mental capacities whereas AD is degeneration of neurons. According to World Health Organization (WHO) report; more than 55 million peoples have dementia and it is raising 10 million new cases every year.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with neuroinflammation and heightened production of reactive oxygen species (ROS) in the brain from overactive NADPH Oxidase 2 (NOX2). The current study examines whether administration of a novel, brain-penetrant NOX2 inhibitor (CPP11G & CPP11H) reduces amyloid plaque load and improves AD-associated vascular dysfunction in a male APP-PS1 mouse model of AD.
Method: Intraperitoneal injections of CPP11G (n = 1) or CPP11H (n = 2) three times per week began at 9-10 months of age in the treatment APP-PS1 group (15 mg/kg).
FASEB J
January 2025
Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China.
Obstructive sleep apnea (OSA) is increasingly recognized for its link to idiopathic pulmonary fibrosis (IPF), though the underlying mechanisms remain poorly understood. Histone lysine demethylase 6B (KDM6B) may either prevent or promote organ fibrosis, but its specific role in IPF is yet to be clarified. This study aimed to investigate the function and mechanisms of KDM6B in IPF and the exacerbating effects of OSA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!