Background: N6A methylation (m6A) is a significant epigenetic modification that critically impacts post-transcriptional regulation and tumor occurrence and development. While previous studies have identified a role for epigenetic regulation in hepatocellular carcinoma (HCC), the potential function of the m6A cluster in Hepatitis B virus (HBV)-related HCC remains unclear.

Methods: The related information was downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Based on the expression of 20 m6A regulators, we comprehensively evaluated the m6A clusters and systematically explored the correlation between these clusters and immune cell infiltration characteristics of the tumor microenvironment (TME). The patients were divided into low- and high-m6A score groups. Then, the immune cell infiltration, chemokines, and cytokines levels, and drug sensitivity were further explored between the two groups.

Results: The m6A cluster predicted a better prognosis that was accompanied by increased immune cell infiltration. Using these results, an m6A score was established that could predict overall survival, immune checkpoints, and clinical treatments for patients with HBV-related HCC. This study demonstrated that m6A modifications affected tumorigenesis, TME, and the prognosis of patients with HBV-related HCC.

Conclusion: A comprehensive assessment of m6A patterns could improve the current understanding of immune cell infiltration patterns and inform the development of individualized cancer treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385918PMC
http://dx.doi.org/10.1186/s12876-023-02873-6DOI Listing

Publication Analysis

Top Keywords

immune cell
16
cell infiltration
16
m6a
9
m6a regulators
8
hepatocellular carcinoma
8
m6a cluster
8
hbv-related hcc
8
patients hbv-related
8
immune
6
infiltration
5

Similar Publications

The first evidence that Orthopoxvirus induced the expansion and the recall of effector innate Vδ2T-cells was described in a macaque model. Although, an engagement of αβ T-cells specific response in patients infected with human monkeypox (Mpox) was demonstrated, little is known about the role of γδ T-cells during Mpox infection. IFN-γ-producing γδ T-cells in the resistance to poxviruses may a key role in inducing a protective type 1 memory immunity.

View Article and Find Full Text PDF

Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.

View Article and Find Full Text PDF

Ovarian cancer (OC) ranks as the fifth leading cause of cancer-related deaths in the United States, posing a significant threat to female health. Late-stage diagnoses, driven by elusive symptoms often masquerading as gastrointestinal issues, contribute to a concerning 70% of cases being identified in advanced stages. While early-stage OC brags a 90% cure rate, progression involving pelvic organs or extending beyond the peritoneal cavity drastically diminishes it.

View Article and Find Full Text PDF

This review discusses the possibility of inheritance of some diseases through mutations in mitochondrial DNA. These are examples of many mitochondrial diseases that can be caused by mutations in mitochondrial DNA. Symptoms and severity can vary widely depending on the specific mutation and affected tissues.

View Article and Find Full Text PDF

Personalized Nanovaccine Based on STING-Activating Nanocarrier for Robust Cancer Immunotherapy.

ACS Nano

January 2025

Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.

Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!