Alzheimer's disease (AD) is a degenerative disease of the central nervous system. Numerous studies have shown that imbalances in cholesterol homeostasis in the brains of AD patients precede the onset of clinical symptoms. In addition, cholesterol deposition has been observed in the brains of AD patients even though peripheral cholesterol does not enter the brain through the blood‒brain barrier (BBB). Studies have demonstrated that cholesterol metabolism in the brain is associated with many pathological conditions, such as amyloid beta (Aβ) production, Tau protein phosphorylation, oxidative stress, and inflammation. In 2022, some scholars put forward a new hypothesis of AD: the disease involves lipid invasion and its exacerbation of the abnormal metabolism of cholesterol in the brain. In this review, by discussing the latest research progress, the causes and effects of cholesterol retention in the brains of AD patients are analyzed and discussed. Additionally, the possible mechanism through which AD may be improved by targeting cholesterol is described. Finally, we propose that improving the impairments in cholesterol removal observed in the brains of AD patients, instead of further reducing the already impaired cholesterol synthesis in the brain, may be the key to preventing cholesterol deposition and improving the corresponding pathological symptoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-023-03529-y | DOI Listing |
J Med Internet Res
January 2025
Research Centre Jülich, Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Jülich, Germany.
Background: Traditional in-clinic methods of collecting self-reported information are costly, time-consuming, subjective, and often limited in the quality and quantity of observation. However, smartphone-based ecological momentary assessments (EMAs) provide complementary information to in-clinic visits by collecting real-time, frequent, and longitudinal data that are ecologically valid. While these methods are promising, they are often prone to various technical obstacles.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Psychiatry, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
Background: Despite transcranial direct current stimulation (tDCS) has demonstrated encouraging potential for modulating the circadian rhythm, little is known about how well and sustainably tDCS might improve the subjective sleep quality in older adults. This study sought to determine how tDCS affected sleep quality and cognition, as well as how well pre-treatment sleep quality predicted tDCS effects on domain-specific cognitive functions in patients with mild neurocognitive disorder due to Alzheimer's disease (NCD-AD).
Methods: This clinical trial aimed to compare the effectiveness of tDCS and cognitive training in mild NCD-AD patients (n = 201).
Wiad Lek
January 2025
EXPERT-ANALYTICAL MEDICAL CENTER FOR MOLECULAR GENETICS, SHUPYK NATIONAL HEALTHCARE UNIVERSITY OF UKRAINE, KYIV, UKRAINE.
Objective: Aim: To determine the influence of maternal and neonatal variants of the eNOS (G894T, rs1799983) and IL1B (C3953T, rs1143634) genes and their intergenic interactions on the development of HIE in newborns.
Patients And Methods: Materials and Methods: The study included a cohort of 105 newborns and their 99 mothers. Determination of variants of the genes eNOS (G894T, rs1799983) and IL1B (C3953T, rs1143634) was carried out for the patients of study groups.
Proc Natl Acad Sci U S A
February 2025
Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany.
The inferior colliculus is a key nucleus in the central auditory pathway, integrating acoustic stimuli from both cochleae and playing a crucial role in sound localization. It undergoes functional and structural development in childhood and experiences age-related degeneration later in life, contributing to the progression of age-related hearing loss. This study aims at finding out, whether the volume of the human inferior colliculus can be determined by analysis of routinely performed MRIs and whether there is any age-related variation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!