The growing concerns about water pollution have prompted researchers to explore new materials for remediating and purifying it. In recent years, there has been a focus on polysaccharides as eco-friendly polymers that exhibit high efficiency in removing chlorophenols from waste water. This study aims to develop a trifunctional polysaccharide structure using a biodegradable matrix. The chitosan/alginate-polyethyleneimine-phenyl-phosphonamidic acid (CHIT/ALG-PEIPPAA) matrix was employed for removing chlorophenols from water. The study carefully examined the impact of various physicochemical parameters such as pH, reaction time, chlorophenols concentration, temperature, and ionic strength to determine the optimal conditions for the adsorption process. Several techniques were used to confirm the morphology, physicochemical properties, structure, and functionalization of the polymer. Scanning electron microscopy (SEM) images revealed a heterogeneous morphology with agglomerates of different particle sizes, ranging from a few micrometers with irregular shapes. The FTIR spectrum and zeta potential characterization indicated the presence of hydrophilic groups and a highly positive charge (around 31.4 mV) on the surface of the CHIT/ALG-PEIPPAA adsorbent. The optimal pH for chlorophenols removal was found to be approximately 4.4. The kinetic data supported the pseudo-second-order kinetic model, which accurately described the adsorption behavior of both chlorophenol molecules. The fitting of the isotherm analysis revealed that the Langmuir model provided a better representation of the adsorption process. The maximum adsorption capacities for 4-chlorophenol and 2,4-chlorophenol were approximately 118 mg.g and 249 mg.g, respectively. The calculated thermodynamic functions confirmed an exothermic and spontaneous adsorption process for chlorophenols, with ∆H values of -6.98 kJ.mol and -2.74 kJ.mol for 4-chlorophenol and 2,4-chlorophenol, respectively. The regeneration process of the CHIT/ALG-PEIPPAA adsorbent showed higher efficacy in the presence of hydrochloric acid (2.0 mol.L), resulting in up to 91% desorption of chlorophenols. The CHIT/ALG-PEIPPAA adsorbent demonstrated good reusability after regeneration, with only a slight decrease in extraction efficiency: 34.63% for 4-chlorophenol and 79.03% for 2,4-chlorophenol, under the same optimal conditions as the initial adsorption cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-28947-2DOI Listing

Publication Analysis

Top Keywords

adsorption process
12
chit/alg-peippaa adsorbent
12
polysaccharide structure
8
removing chlorophenols
8
water study
8
optimal conditions
8
4-chlorophenol 24-chlorophenol
8
chlorophenols
7
adsorption
6
multifunctional polysaccharide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!