The synthesis of biaryl compounds by the transition-metal free coupling of arenes is an important contemporary challenge, aiming to avoid the toxicity and cost profiles associated with the metal catalysts commonly used in the synthesis of these pharmaceutically relevant motifs. In this paper, we describe an electrochemical approach to the synthesis of biaryls in which aniline derivatives are coupled through the formation and reduction of a temporary urea linkage. The conformational alignment of the arenes in the N,N'-diaryl urea intermediates promotes C-C bond formation following single-electron reduction. Our optimized conditions are suitable for the synthesis of a variety of biaryls, including sterically hindered examples carrying ortho-substituents, representing complementary reactivity to most metal catalysed methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382484 | PMC |
http://dx.doi.org/10.1038/s41467-023-40237-6 | DOI Listing |
Acc Chem Res
January 2025
Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.
View Article and Find Full Text PDFChemSusChem
January 2025
Comenius University FNS: Univerzita Komenskeho v Bratislave Prirodovedecka fakulta, Organic chemistry, Mlynska dolina, Ilkovicova 6, 84215, Bratislava, SLOVAKIA.
Cross-coupling reactions are indispensable for the construction of complex molecular scaffolds. In this work, we developed a sustainable methodology for the cross-coupling reaction of arene thianthrenium salts with aryl boronic acids, which can be effectively realized under mechanochemical conditions. Liquid-assisted grinding (LAG) enabled fast and high-yielding synthesis of a range of biaryls via Pd/RuPhos-catalyzed cross-coupling.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Despite the remarkable advancements in hypervalent iodine chemistry, exploration of bromine and chlorine analogues remains in its infancy due to their difficult synthesis. Herein, we introduce six-membered cyclic λ3-bromanes and λ3-chloranes. Through single-crystal X-ray structural analyses and conformational studies, we delineate the crucial bonding patterns pivotal for the thermodynamic stability of these compounds.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States.
We present the serendipitous discovery of an unusual dimer formed from anthracene-derived polyarenes. Unlike the typical oxidative coupling of substituted aromatic scaffolds, the reaction yielded a dearomatized enone dimer as the sole product. This dearomatized motif, notably, does not undergo the commonly observed rearomatization, and no biaryl products were detected.
View Article and Find Full Text PDFChem Asian J
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
Ferric chloride mediated dearomative spirocyclization of biaryl ynones for the synthesis of new series of densely functionalized 3,3-spiroindanone derivatives has been reported. This study is the first to describe the regioselective synthesis of a five-membered ring from biaryl ynones. The scope of the reaction is broad and the spirocyclic products were obtained in moderate to good yields (up to 87 %) and with high stereoselectivities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!