Tribochemically Controlled Atom Transfer Radical Polymerization Enabled by Contact Electrification.

Angew Chem Int Ed Engl

Frontiers Science Center for Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, 710072, China.

Published: September 2023

Traditional mechanochemically controlled reversible-deactivation radical polymerization (RDRP) utilizes ultrasound or ball milling to regenerate activators, which induce side reactions because of the high-energy and high-frequency stimuli. Here, we propose a facile approach for tribochemically controlled atom transfer radical polymerization (tribo-ATRP) that relies on contact-electro-catalysis (CEC) between titanium oxide (TiO ) particles and CuBr /tris(2-pyridylmethylamine (TPMA), without any high-energy input. Under the friction induced by stirring, the TiO particles are electrified, continuously reducing CuBr /TPMA into CuBr/TPMA, thereby conversing alkyl halides into active radicals to start ATRP. In addition, the effect of friction on the reaction was elucidated by theoretical simulation. The results indicated that increasing the frequency could reduce the energy barrier for the electron transfer from TiO particles to CuBr /TPMA. In this study, the design of tribo-ATRP was successfully achieved, enabling CEC (ca. 10 Hz) access to a variety of polymers with predetermined molecular weights, low dispersity, and high chain-end fidelity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202309440DOI Listing

Publication Analysis

Top Keywords

radical polymerization
12
tio particles
12
tribochemically controlled
8
controlled atom
8
atom transfer
8
transfer radical
8
particles cubr
8
cubr /tpma
8
polymerization enabled
4
enabled contact
4

Similar Publications

Visible-Light Photo-Iniferter Polymerization of Molecularly Imprinted Polymers for Direct Integration with Nanotransducers.

Small Methods

January 2025

Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.

Molecularly Imprinted Polymers (MIPs) have gained prominence as synthetic receptors, combining simplicity of synthesis with robust molecular recognition akin to antibodies and enzymes. One of their main application areas is chemical sensing. However, direct integration of MIPs with nanostructured transducers, crucial for enhancing sensing capabilities and broadening MIPs sensing applications, remains limited.

View Article and Find Full Text PDF

Stimulus-responsive hydrogels have emerged as versatile materials for environmental and wastewater treatment applications due to their ability to adapt to changing environmental conditions. This review highlights recent advances in the design, synthesis, and functionalization of such hydrogels, focusing on their environmental applications. Various synthesis techniques, including radical polymerization, grafting, and copolymerization, enable the development of hydrogels with tailored properties such as enhanced adsorption capacity, selectivity, and reusability.

View Article and Find Full Text PDF

The objective of this study was to conduct a comparative analysis of the performance of hydrogels prepared from two distinct raw materials and to identify the hydrogels with the optimal overall capacity for dry farming applications. Ten grafted polymer hydrogels were prepared from melon peel (MP) and orange peel (OP). A comparative analysis of the degree of swelling, water absorption time, pH range, reusability, and soil water retention and water-holding capacity of the two hydrogels revealed that the MP-based hydrogels exhibited superior performance in all evaluated parameters when compared to their OP-based counterparts.

View Article and Find Full Text PDF

Injectable biomaterials play a vital role in modern medicine, offering tailored functionalities for diverse therapeutic and diagnostic applications. In ophthalmology, for instance, viscoelastic materials are crucial for procedures such as cataract surgery but often leave residues, increasing postoperative risks. This study introduces injectable fluorescent viscoelastics (FluoVs) synthesized via one-step controlled radical copolymerization of oligo(ethylene glycol) acrylate and fluorescein acrylate.

View Article and Find Full Text PDF

As the rubber industry seeks sustainable alternatives to mitigate its environmental impact, this study introduces a biobased approach using polyfarnesene rubber reinforced with plasma-modified cellulose nanocrystals (MCNC) and nanofibers (MCNF). The nanocellulose was modified by plasma-induced polymerization using trans-β-farnesene and was characterized by FTIR, XPS, XRD, TGA, and SEM to confirm the grafting of farnesene-derived polymer chains onto the cellulose surface, demonstrating the successful modification and integration of the nanoparticles. Polyfarnesene bio-based rubbers were synthesized through two different polymerization techniques: solution-based coordination polymerization (PFA1) and emulsion-based free radical polymerization (PFA2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!