Differential expression of genes involved in the chronic response to intracortical microelectrodes.

Acta Biomater

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States. Electronic address:

Published: October 2023

Brain-Machine Interface systems (BMIs) are clinically valuable devices that can provide functional restoration for patients with spinal cord injury or improved integration for patients requiring prostheses. Intracortical microelectrodes can record neuronal action potentials at a resolution necessary for precisely controlling BMIs. However, intracortical microelectrodes have a demonstrated history of progressive decline in the recording performance with time, inhibiting their usefulness. One major contributor to decreased performance is the neuroinflammatory response to the implanted microelectrodes. The neuroinflammatory response can lead to neurodegeneration and the formation of a glial scar at the implant site. Historically, histological imaging of relatively few known cellular and protein markers has characterized the neuroinflammatory response to implanted microelectrode arrays. However, neuroinflammation requires many molecular players to coordinate the response - meaning traditional methods could result in an incomplete understanding. Taking advantage of recent advancements in tools to characterize the relative or absolute DNA/RNA expression levels, a few groups have begun to explore gene expression at the microelectrode-tissue interface. We have utilized a custom panel of ∼813 neuroinflammatory-specific genes developed with NanoString for bulk tissue analysis at the microelectrode-tissue interface. Our previous studies characterized the acute innate immune response to intracortical microelectrodes. Here we investigated the gene expression at the microelectrode-tissue interface in wild-type (WT) mice chronically implanted with nonfunctioning probes. We found 28 differentially expressed genes at chronic time points (4WK, 8WK, and 16WK), many in the complement and extracellular matrix system. Further, the expression levels were relatively stable over time. Genes identified here represent chronic molecular players at the microelectrode implant sites and potential therapeutic targets for the long-term integration of microelectrodes. STATEMENT OF SIGNIFICANCE: Intracortical microelectrodes can record neuronal action potentials at a resolution necessary for the precise control of Brain-Machine Interface systems (BMIs). However, intracortical microelectrodes have a demonstrated history of progressive declines in the recording performance with time, inhibiting their usefulness. One major contributor to the decline in these devices is the neuroinflammatory response against the implanted microelectrodes. Historically, neuroinflammation to implanted microelectrode arrays has been characterized by histological imaging of relatively few known cellular and protein markers. Few studies have begun to develop a more in-depth understanding of the molecular pathways facilitating device-mediated neuroinflammation. Here, we are among the first to identify genetic pathways that could represent targets to improve the host response to intracortical microelectrodes, and ultimately device performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528922PMC
http://dx.doi.org/10.1016/j.actbio.2023.07.038DOI Listing

Publication Analysis

Top Keywords

intracortical microelectrodes
28
neuroinflammatory response
16
response intracortical
12
response implanted
12
microelectrode-tissue interface
12
microelectrodes
10
response
8
brain-machine interface
8
interface systems
8
systems bmis
8

Similar Publications

Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface (BCI) to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays.

View Article and Find Full Text PDF

Longitudinal changes in electrophysiology and widefield calcium imaging following electrode implantation.

J Neural Eng

December 2024

Department of Radiology, University of Pittsburgh, 203 Lothrop St, EEI Suite 700, Pittsburgh, PA 15213, United States of America.

. Intracortical microelectrode arrays often fail to deliver reliable signal quality over chronic recordings, and the effect of an implanted recording array on local neural circuits is not completely understood..

View Article and Find Full Text PDF

Precise anatomical implantation of a microelectrode array is fundamental for successful brain-computer interface (BCI) surgery, ensuring high-quality, robust signal communication between the brain and the computer interface. Robotic neurosurgery can contribute to this goal, but its application in BCI surgery has been underexplored. Here, the authors present a novel robot-assisted surgical technique to implant rigid intracortical microelectrode arrays for the BCI.

View Article and Find Full Text PDF

Decoding neural activity from ventral (speech) motor cortex is known to enable high-performance speech brain-computer interface (BCI) control. It was previously unknown whether this brain area could also enable computer control via neural cursor and click, as is typically associated with dorsal (arm and hand) motor cortex. We recruited a clinical trial participant with ALS and implanted intracortical microelectrode arrays in ventral precentral gyrus (vPCG), which the participant used to operate a speech BCI in a prior study.

View Article and Find Full Text PDF

Dynamic changes in the structure and function of brain mural cells around chronically implanted microelectrodes.

Biomaterials

April 2025

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA. Electronic address:

Integration of neural interfaces with minimal tissue disruption in the brain is ideal to develop robust tools that can address essential neuroscience questions and combat neurological disorders. However, implantation of intracortical devices provokes severe tissue inflammation within the brain, which requires a high metabolic demand to support a complex series of cellular events mediating tissue degeneration and wound healing. Pericytes, peri-vascular cells involved in blood-brain barrier maintenance, vascular permeability, waste clearance, and angiogenesis, have recently been implicated as potential perpetuators of neurodegeneration in brain injury and disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!