Calcium sulfate minerals are abundant in nature - on Earth and on Mars - and important in several fields of material sciences. With respect to gypsum and bassanite, anhydrite represents the anhydrous crystalline phase in the CaSO-HO system. Despite years of research, the formation of anhydrite in the laboratory at low temperature remains challenging and, in the geological record, this mineral is mostly interpreted as a secondary phase that form through metamorphic dehydration of gypsum. Here, we present the results of laboratory precipitation experiments showing that anhydrite can form at 35 °C from evaporated seawater through a microbially influenced mineralization process. The experiments were conducted in the presence of extracellular polymeric substances (EPS) produced by bacterial strains isolated from a modern evaporitic environment, the Dohat Faishakh sabkha in Qatar. Without organic molecules, only gypsum formed in parallel control experiments. This finding provides a possible explanation for the origin of several natural occurrences of anhydrite that cannot be satisfactorily explained by existing models and reveals a new precipitation pathway that may have industrial applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.165820 | DOI Listing |
Sci Rep
December 2024
MTA-DE "Momentum" Ecology, Evolution & Developmental Biology Research Group, Dept. of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.
The objective to study the influence of microbiome on host fitness is frequently constrained by spatial and temporal variability of microbial communities. In particular, the environment serves as a dynamic reservoir of microbes that provides potential colonizers for animal microbiomes. In this study, we analyzed the microbiome of Hydra oligactis and corresponding water samples from 15 Hungarian lakes to reveal the contribution of environmental microbiota on host microbiome.
View Article and Find Full Text PDFInt Dent J
December 2024
King Salman Hospital, Ministry of Health, Riyadh, Saudi Arabia.
Introduction And Aims: Dental practices pose a high risk of microbial contamination due to frequent exposure to bodily fluids like saliva and blood. Bioengineering innovations have emerged as vital tools to enhance infection control in dental settings. This review aims to assess the global applications and effectiveness of these innovations, particularly focusing on antimicrobial biomaterials, sterilization techniques, and personal protective equipment (PPE).
View Article and Find Full Text PDFBiotechnol Adv
December 2024
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:
Lignocellulosic biomass (LCB) is expected to play a critical role in achieving the goal of biomass-to-bioenergy conversion because of its wide distribution and low price. Biomass fermentation is a promising method for the sustainable generation of biohydrogen (bioH) from the renewable feedstock. Due to the inherent resistant structure of biomass, LCB needs to be pretreated to improve its digestibility and utilization.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea. Electronic address:
A comprehensive understanding of microbial assembly is essential for achieving stable performance in biological wastewater treatment. Nevertheless, few studies have quantified these phenomena in detail, particularly in anammox-based processes. This study integrated mathematical and microbial approaches to analyze a 330-day anammox reactor with stable nitrogen removal efficiency (97 - 99%) despite changes in the high nitrogen loading rate, nitrogen concentration, and hydraulic retention time.
View Article and Find Full Text PDFSci Total Environ
December 2024
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China. Electronic address:
Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!