A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A self-unfolding proximity enabling device for oral delivery of macromolecules. | LitMetric

A self-unfolding proximity enabling device for oral delivery of macromolecules.

J Control Release

The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. Electronic address:

Published: September 2023

Oral delivery of macromolecules remains highly challenging due to their rapid degradation in the gastrointestinal tract and poor absorption across the tight junctions of the epithelium. In the last decade, researchers have investigated several medical devices to overcome these challenges using various approaches, some of which involve piercing through the intestine using micro and macro needles. We have developed a new generation of medical devices called self-unfolding proximity enabling devices, which makes it possible to orally deliver macromolecules without perforating the intestine. These devices protect macromolecules from the harsh conditions in the stomach and release their active pharmaceutical ingredients in the vicinity of the intestinal epithelium. One device version is a self-unfolding foil that we have used to deliver insulin and nisin to rats and pigs respectively. In our study, this device has shown a great potential for delivering peptides, with a significant increase in the absorption of solid dosage of insulin by ∼12 times and nisin by ∼4 times in rats and pigs, respectively. With the ability to load solid dosage forms, our devices can facilitate enhanced absorption of minimally invasive oral macromolecule formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2023.07.041DOI Listing

Publication Analysis

Top Keywords

self-unfolding proximity
8
proximity enabling
8
oral delivery
8
delivery macromolecules
8
medical devices
8
rats pigs
8
solid dosage
8
devices
5
enabling device
4
device oral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!