Control analysis in the identification of key enzymes driving metabolic adaptations: Towards drug target discovery.

Biosystems

Department of Biochemistry and Molecular Biomedicine & Institute of Biomedicine of Universitat de Barcelona, Faculty of Biology, Universitat de Barcelona, Barcelona, 08028, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, 28020, Spain. Electronic address:

Published: September 2023

Metabolic Control Analysis (MCA) marked a turning point in understanding the design principles of metabolic network control by establishing control coefficients as a means to quantify the degree of control that an enzyme exerts on flux or metabolite concentrations. MCA has demonstrated that control of metabolic pathways is distributed among many enzymes rather than depending on a single rate-limiting step. MCA also proved that this distribution depends not only on the stoichiometric structure of the network but also on other kinetic determinants, such as the degree of saturation of the enzyme active site, the distance to thermodynamic equilibrium, and metabolite feedback regulatory loops. Consequently, predicting the alterations that occur during metabolic adaptation in response to strong changes involving a redistribution in such control distribution can be challenging. Here, using the framework provided by MCA, we illustrate how control distribution in a metabolic pathway/network depends on enzyme kinetic determinants and to what extent the redistribution of control affects our predictions on candidate enzymes suitable as targets for small molecule inhibition in the drug discovery process. Our results uncover that kinetic determinants can lead to unexpected control distribution and outcomes that cannot be predicted solely from stoichiometric determinants. We also unveil that the inference of key enzyme-drivers of an observed metabolic adaptation can be dramatically improved using mean control coefficients and ruling out those enzyme activities that are associated with low control coefficients. As the use of constraint-based stoichiometric genome-scale metabolic models (GSMMs) becomes increasingly prevalent for identifying genes/enzymes that could be potential drug targets, we anticipate that incorporating kinetic determinants and ruling out enzymes with low control coefficients into GSMM workflows will facilitate more accurate predictions and reveal novel therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2023.104984DOI Listing

Publication Analysis

Top Keywords

control coefficients
16
kinetic determinants
16
control
13
control distribution
12
control analysis
8
metabolic
8
metabolic adaptation
8
redistribution control
8
low control
8
determinants
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!