Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A shift beyond conventional environmental remediation to a sustainable pollutant upgrading conversion is extremely desirable due to the rising demand for resources and widespread chemical contamination. Electrochemical reduction processes (ERPs) have drawn considerable attention in recent years in the fields of oxyanion reduction, metal recovery, detoxification and high-value conversion of halogenated organics and benzenes. ERPs also have the potential to address the inherent limitations of conventional chemical reduction technologies in terms of hydrogen and noble metal requirements. Fundamentally, mechanisms of ERPs can be categorized into three main pathways: direct electron transfer, atomic hydrogen mediation, and electrode redox pairs. Furthermore, this review consolidates state-of-the-art non-noble metal cathodes and their performance comparable to noble metals (e.g., Pd, Pt) in electrochemical reduction of inorganic/organic pollutants. To overview the research trends of ERPs, we innovatively sort out the relationship between the electrochemical reduction rate, the charge of the pollutant, and the number of electron transfers based on the statistical analysis. And we propose potential countermeasures of pulsed electrocatalysis and flow mode enhancement for the bottlenecks in electron injection and mass transfer for electronegative pollutant reduction. We conclude by discussing the gaps in the scientific and engineering level of ERPs, and envisage that ERPs can be a low-carbon pathway for industrial wastewater detoxification and valorization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.132106 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!