Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The photoactive metal-organic frameworks (MOFs) are good candidates for photocatalysts, but the quick electron-hole pairs recombination has greatly restricted the photocatalytic ability of MOFs. To improve the photoactivity of MOFs, MOFs-based composite materials have been extensively studied. Here, we successfully integrated MoS quantum dots (QDs) with UiO-66-NH for the first time under hydrothermal conditions. The as-prepared MoS QDs/UiO-66-NH (MS-U) had good visible light response ability (absorption edge at 445 nm), and charge separation and transfer ability, which lays the foundation for the photocatalytic Cr(VI) reduction. Photocatalytic studies revealed that MoS QDs-5/UiO-66-NH (MS-U-5) had superior Cr(VI) reduction activity than pure MoS QDs and UiO-66-NH. MS-U-5 could remove 98% Cr(VI) at pH= 2 with visible light irradiation for 20 min, which is the fastest visible light driven Cr(VI) reduction rate among the reported MOFs-based composite photocatalysts without the presence of any cocatalysts or scavengers as far as we know. Importantly, MS-U-5 could be reused at least three times. In the end, the possible electron transfer path and mechanism of Cr(VI) reduction was also investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2023.115304 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!