Modeling Recombination Rate as a Quantitative Trait Reveals New Insight into Selection in Humans.

Genome Biol Evol

Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA.

Published: August 2023

Meiotic recombination is both a fundamental biological process required for proper chromosomal segregation during meiosis and an important genomic parameter that shapes major features of the genomic landscape. However, despite the central importance of this phenotype, we lack a clear understanding of the selective pressures that shape its variation in natural populations, including humans. While there is strong evidence of fitness costs of low rates of recombination, the possible fitness costs of high rates of recombination are less defined. To determine whether a single lower fitness bound can explain the variation in recombination rates observed in human populations, we simulated the evolution of recombination rates as a sexually dimorphic quantitative trait. Under each scenario, we statistically compared the resulting trait distribution with the observed distribution of recombination rates from a published study of the Icelandic population. To capture the genetic architecture of recombination rates in humans, we modeled it as a moderately complex trait with modest heritability. For our fitness function, we implemented a hyperbolic tangent curve with several flexible parameters to capture a wide range of existing hypotheses. We found that costs of low rates of recombination alone are likely insufficient to explain the current variation in recombination rates in both males and females, supporting the existence of fitness costs of high rates of recombination in humans. With simulations using both upper and lower fitness boundaries, we describe a parameter space for the costs of high recombination rates that produces results consistent with empirical observations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404793PMC
http://dx.doi.org/10.1093/gbe/evad132DOI Listing

Publication Analysis

Top Keywords

recombination rates
24
rates recombination
16
fitness costs
12
costs high
12
recombination
11
rates
10
quantitative trait
8
costs low
8
low rates
8
high rates
8

Similar Publications

Sheeppox and Goatpox are highly contagious transboundary viral diseases of sheep and goats caused by Capripoxvirus, respectively. This study describes the development of indirect ELISA and its serodiagnostic potential as an alternative to the gold standard serum neutralization test (SNT). The homologue of vaccinia virus, ORF 117 (A27L) gene of the Romanian Fenner (RF) strain of Sheeppox virus (SPPV) was used for producing the full-length recombinant A27L (rA27L) protein (∼22 kDa) in a prokaryotic expression system.

View Article and Find Full Text PDF

The growing demand for efficient, stable, and environmentally friendly photovoltaic technologies has motivated the exploration of nontoxic perovskite materials such as KGeCl. However, the performance of KGeCl-based perovskite solar cells (PSCs) depends heavily on the compatibility of charge transport layers (CTLs) and optimization of device parameters. In this study, six PSC configurations were simulated using SCAPS-1D software, incorporating CTLs such as Alq, CSTO, VO, PB, and SbS.

View Article and Find Full Text PDF

Aim: This study compared the cost-effectiveness of two recombinant follicle-stimulating hormones (rFSH) formulations, Follitropin Delta and Follitropin Alfa, in controlled ovarian stimulation using cumulative live birth rates as an efficacy indicator.

Methodology: This retrospective study was conducted across five clinics in Japan from April 2022 to December 2023, involving 446 first assisted reproductive technology (ART) cycles (200 with Follitropin Delta and 246 with Follitropin Alfa) were treated with rFSH monotherapy using either Follitropin Delta or Follitropin Alfa. We compared clinical outcomes such as cumulative pregnancy and live birth rates and analyzed cost-effectiveness using the cumulative live birth rates as the efficacy indicator and the incremental cost-effectiveness ratio (ICER).

View Article and Find Full Text PDF

Temperature-Dependent Water Oxidation Kinetics: Implications and Insights.

ACS Cent Sci

January 2025

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States.

As a vital process for solar fuel synthesis, water oxidation remains a challenging reaction to perform using durable and cost-effective systems. Despite decades of intense research, our understanding of the detailed processes involved is still limited, particularly under photochemical conditions. Recent research has shown that the overall kinetics of water oxidation by a molecular dyad depends on the coordination between photocharge generation and the subsequent chemical steps.

View Article and Find Full Text PDF

To investigate the effects of long non-coding RNA KLHL7-AS1 (LncRNA KLHL7-AS1) on the proliferation and apoptosis of nucleus pulposus cells under oxidative stress and its mechanisms. Human nucleus pulposus cells (HUM-iCell-s012) were divided into 4 groups, and unoxidized nucleus pulposus cells were transfected with an empty pcDNA vector (pcDNA-control) to serve as the blank control group. Based on previous studies on oxidative stress-induced nucleus pulposus cell senescence and preliminary experiments, oxidative stress was induced by treating nucleus pulposus cells with 400 μmol/L HO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!