Quantum vortices are a core element of superfluid dynamics and elusively hold the keys to our understanding of energy dissipation in these systems. We show that we are able to visualize these vortices in the canonical and higher-symmetry case of a stationary rotating superfluid bucket. Using direct visualization, we quantitatively verify Feynman's rule linking the resulting quantum vortex density to the imposed rotational speed. We make the most of this stable configuration by applying an alternative heat flux aligned with the axis of rotation. Moderate amplitudes led to the observation of collective wave mode propagating along the vortices, and high amplitudes led to quantum vortex interactions. When increasing the heat flux, this ensemble of regimes defines a path toward quantum turbulence in rotating He and sets a baseline to consolidate the descriptions of all quantum fluids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381927 | PMC |
http://dx.doi.org/10.1126/sciadv.adh2899 | DOI Listing |
Natl Sci Rev
February 2025
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.
To achieve logic operations via Majorana braiding, positional control of the Majorana bound states (MBSs) must be established. Here we report the observation of a striped surface charge order coexisting with superconductivity and its interaction with the MBS in the topological superconductor 2M-WS, using low-temperature scanning tunneling microscopy. By applying an out-of-plane magnetic field, we observe that MBSs are absent in vortices in the region with stripe order.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité and CNRS, Paris, 75013, France.
Vortex beams are currently drawing a great deal of interest, from fundamental research to several promising applications. While their generation in bulky optical devices limits their use in integrated complex systems, metasurfaces have recently proven successful in creating optical vortices, especially in the linear regime. In the nonlinear domain, of strategic importance for the future of classical and quantum information, to date orbital angular momentum has only been created in qualitative ways, without discussing discrepancies between design and experimental results.
View Article and Find Full Text PDFSci Adv
January 2025
Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA.
Precise and rapid disease detection is critical for controlling infectious diseases like COVID-19. Current technologies struggle to simultaneously identify viral RNAs and host immune antibodies due to limited integration of sample preparation and detection. Here, we present acoustofluidic integrated molecular diagnostics (AIMDx) on a chip, a platform enabling high-speed, sensitive detection of viral immunoglobulins [immunoglobulin A (IgA), IgG, and IgM] and nucleic acids.
View Article and Find Full Text PDFChemSusChem
January 2025
Griffith University, School of Engineering and Built Environment, 170 Kessels Rd, 4111, Nathan, AUSTRALIA.
Carbon dots (CDs) as a new class of photoluminescent zero-dimension carbon nanoparticles have attracted significant research interests owing to their extraordinary opto-electro-properties and biocompatibility. So far, almost all syntheses of CDs require either heat treatment or exertion of high energy fields. Herein, a scalable room-temperature vortex fluidic method is introduced to the CDs synthesis using the angled vortex fluidic device (VFD).
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!