Federated learning (FL) is an emerging distributed machine learning (ML) framework that operates under privacy and communication constraints. To mitigate the data heterogeneity underlying FL, clustered FL (CFL) was proposed to learn customized models for different client groups. However, due to the lack of effective client selection strategies, the CFL process is relatively slow, and the model performance is also limited in the presence of nonindependent and identically distributed (non-IID) client data. In this work, for the first time, we propose selecting participating clients for each cluster with active learning (AL) and call our method active client selection for CFL (ACFL). More specifically, in each ACFL round, each cluster filters out a small set of clients, which are the most informative clients according to some AL metrics [e.g., uncertainty sampling, query-by-committee (QBC), loss], and aggregates only its model updates to update the cluster-specific model. We empirically evaluate our ACFL approach on the public MNIST, CIFAR-10, and LEAF synthetic datasets with class-imbalanced settings. Compared with several FL and CFL baselines, the results reveal that ACFL can dramatically speed up the learning process while requiring less client participation and significantly improving model accuracy with a relatively low communication overhead.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3294295DOI Listing

Publication Analysis

Top Keywords

client selection
12
active client
8
federated learning
8
learning
5
client
5
selection clustered
4
clustered federated
4
learning federated
4
learning emerging
4
emerging distributed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!