Epileptic seizure detection aims to replace unreliable seizure diaries by a model that automatically detects seizures based on electroencephalography (EEG) sensors. However, developing such a model is difficult and time consuming as it requires manually searching for relevant features from complex EEG data. Domain experts may have a partial understanding of the EEG characteristics that indicate seizures, but this knowledge is often not sufficient to exhaustively enumerate all relevant features. To address this challenge, we investigate how automated feature construction may complement hand-crafted features for epileptic seizure detection. By means of an empirical comparison on a real-world seizure detection dataset, we evaluate the ability of automated feature construction to come up with new relevant features. We show that combining hand-crafted and automated features results in more accurate models compared to using hand-crafted features alone. Our findings suggest that future studies on developing EEG-based seizure detection models may benefit from features constructed using a combination of hand-crafted and automated feature engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2023.3299821DOI Listing

Publication Analysis

Top Keywords

seizure detection
16
relevant features
12
automated feature
12
features
8
features epileptic
8
epileptic seizure
8
feature construction
8
hand-crafted features
8
hand-crafted automated
8
hand-crafted
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!