Tree Recovery by Dynamic Programming.

IEEE Trans Pattern Anal Mach Intell

Published: December 2023

Tree-like structures are common, naturally occurring objects that are of interest to many fields of study, such as plant science and biomedicine. Analysis of these structures is typically based on skeletons extracted from captured data, which often contain spurious cycles that need to be removed. We propose a dynamic programming algorithm for solving the NP-hard tree recovery problem formulated by (Estrada et al. 2015), which seeks a least-cost partitioning of the graph nodes that yields a directed tree. Our algorithm finds the optimal solution by iteratively contracting the graph via node-merging until the problem can be trivially solved. By carefully designing the merging sequence, our algorithm can efficiently recover optimal trees for many real-world data where (Estrada et al. 2015) only produces sub-optimal solutions. We also propose an approximate variant of dynamic programming using beam search, which can process graphs containing thousands of cycles with significantly improved optimality and efficiency compared with (Estrada et al. 2015).

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2023.3299868DOI Listing

Publication Analysis

Top Keywords

dynamic programming
12
estrada 2015
12
tree recovery
8
recovery dynamic
4
programming tree-like
4
tree-like structures
4
structures common
4
common naturally
4
naturally occurring
4
occurring objects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!