Universal Velocity Statistics in Decaying Turbulence.

Phys Rev Lett

Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; Institute for Dynamcis of Complex Systems, University of Göttingen, 37075 Göttingen, Germany; Physics Department and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, 14853 New York, USA; and Max Planck University of Twente Center for Complex Fluid Dynamics, Göttingen, Germany and Twente 7522NB, Netherlands.

Published: July 2023

In turbulent flows, kinetic energy is transferred from large spatial scales to small ones, where it is converted to heat by viscosity. For strong turbulence, i.e., high Reynolds numbers, Kolmogorov conjectured in 1941 that this energy transfer is dominated by inertial forces at intermediate spatial scales. Since Kolmogorov's conjecture, the velocity difference statistics in this so-called inertial range have been expected to follow universal power laws for which theoretical predictions have been refined over the years. Here we present experimental results over an unprecedented range of Reynolds numbers in a well-controlled wind tunnel flow produced in the Max Planck Variable Density Turbulence Tunnel. We find that the measured second-order velocity difference statistics become independent of the Reynolds number, suggesting a universal behavior of decaying turbulence. However, we do not observe power laws even at the highest Reynolds number, i.e., at turbulence levels otherwise only attainable in atmospheric flows. Our results point to a Reynolds number-independent logarithmic correction to the classical power law for decaying turbulence that calls for theoretical understanding.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.024001DOI Listing

Publication Analysis

Top Keywords

decaying turbulence
12
spatial scales
8
reynolds numbers
8
velocity difference
8
difference statistics
8
power laws
8
reynolds number
8
turbulence
6
reynolds
5
universal velocity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!