The objective of this study was to investigate how subcutaneous (sc) lipopolysaccharide (LPS) administration affects the gene expression profiles of insulin signaling as well as innate and adaptive immunity genes in mouse livers and spleens. FVB/N female mice were randomly assigned to one of two treatment groups at 5 weeks of age: (1) a six-week subcutaneous injection of saline at 11 μL/h (control-CON), or (2) a six-week subcutaneous injection of LPS from 0111:B4 at 0.1 μg/g body weight at 11 μL/h. At 106 weeks (i.e., 742 days) after the last treatment, mice were euthanized. Following euthanasia, liver and spleen samples were collected, snap frozen, and stored at -80 °C until gene expression profiling. LPS upregulated nine genes in the liver, according to the findings ( and ). With a 4.18-fold increase over the CON group, was the most up-regulated gene in the liver. Based on the annotation cluster analysis, LPS treatment upregulated liver genes which are involved in pathways associated with hepatic steatosis, B- and T-cell receptor signaling, chemokine signaling, as well as other types of cancers such as endometrial cancer, prostate cancer, and colorectal cancer. LPS increased the spleen expression of and all of which are involved in innate and adaptive immune responses and the regulation of cytokine production. Furthermore, functional analysis revealed that cytokine-cytokine receptor interaction and chemokine signaling pathways were the most enriched in LPS-treated mice spleen tissue. Our findings support the notion that early-life LPS exposure can result in long-term changes in gene expression profiling in the liver and spleen tissues of FVB/N female mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384579PMC
http://dx.doi.org/10.3390/vetsci10070445DOI Listing

Publication Analysis

Top Keywords

gene expression
16
liver spleen
12
changes gene
8
expression profiles
8
signaling well
8
innate adaptive
8
fvb/n female
8
female mice
8
six-week subcutaneous
8
subcutaneous injection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!