The stability of drinking water distribution systems and the management of disinfection by-products are critical to ensuring public health safety. In this paper, the interrelationships between corrosion products in the network, microbes, and drinking water quality are elucidated. This review also discusses the mechanisms through which corrosive by-products from the piping network influence the decay of disinfectants and the formation of harmful disinfection by-products. Factors such as copper corrosion by-products, CuO, CuO, and Cu play a significant role in accelerating disinfectant decay and catalyzing the production of by-products. Biofilms on pipe walls react with residual chlorine, leading to the formation of disinfection by-products (DBPs) that also amplify health risks. Finally, this paper finally highlights the potential of peroxymonosulfate (PMS), an industrial oxidant, as a disinfectant that can reduce DBP formation, while acknowledging the risks associated with its corrosive nature. Overall, the impact of the corrosive by-products of pipe scale and microbial communities on water quality in pipe networks is discussed, and recommendations for removing DBPs are presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385944 | PMC |
http://dx.doi.org/10.3390/toxics11070606 | DOI Listing |
Sci Total Environ
January 2025
Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou, 510000, China.
OH-mediated advanced oxidation processes (AOPs) are widely used in wastewater treatment and drinking water purification. Recently, an increasing number of studies have indicated that common inorganic nitrogen ions can efficiently generate •OH under UV irradiation, demonstrating strong performance in the degradation of various contaminants. Conversely, the presence of inorganic nitrogen ions in UV or other oxidation processes dramatically increases the yield of toxic nitro (so)-aromatic products and the formation potential of nitrogenous disinfection by-products with high genotoxicity and cytotoxicity.
View Article and Find Full Text PDFSci Total Environ
January 2025
China National Environmental Monitoring Centre, Beijing 100012, China.
The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, 310021, China.
Disinfection is a critical process to ensure the safety of drinking water. To curb the spread of various bacteria and viruses, disinfectants are extensively employed in communities, hospitals, sewage treatment plants, and other settings. However, disinfectants can produce disinfection by-products (DBPs) that threaten human health.
View Article and Find Full Text PDFSci Total Environ
January 2025
Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai de Watier, 78401 Chatou Cedex 01, France.
This paper aims to test several modeling approaches for predicting toxicity of binary mixtures with potential synergy and antagonism. The approach based on the construction of isoboles was first tested and criticized. In contrast to conventional approaches, and in order to be mathematically consistent with the additivity assumptions, non-linear isoboles have been constructed.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China. Electronic address:
The essential shortcoming of rapid passivation deactivation limits the efficient application of nano zero-valent iron (nZVI) in eliminating disinfection byproducts from drinking water. Copper-coated nano zero-valent iron (Cu-nZVI) bimetallic composites were synthesized to efficiently activate persulfate (PS) to remove nitrosopyrrolidine (NPYR). By introducing Cu-coated coatings, nZVI is protected from direct contact with PS; thus, Cu-nZVI appears to activate PS efficiently and stably without rapid deactivation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!