This study measured the concentrations of Hg, As, Ni, Cd, and Pb in six fish species commonly consumed in Kendari. Samples were bought within local markets from 2012 to 2017 at the end of the dry season. Results showed that mercury concentrations fluctuated between years and within species, except in the , which showed no significant differences (Kruskall-Wallis, -value > 0.05, df = 5) and an average concentration of 0.371 ± 0.162 µg g DW. Arsenic was found in high concentrations across species and years and varied widely in . , the lowest value being 0.32 ± 0.01 µg g DW in 2012 and the highest was 5.63 ± 1.89 µg g DW in 2017. The highest nickel concentrations were found in 2016 across four of the six species. The fish samples displayed very low cadmium and lead concentrations throughout the study. In addition, the potential human health risk due to fish consumption was assessed. This showed that mercury is the only one of the five metals present in concentrations high enough to individually pose a potential hazard, the only metal likely to be accumulated beyond a safe concentration in Kendari. never posed a toxicological risk based on the results of this research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383168PMC
http://dx.doi.org/10.3390/toxics11070592DOI Listing

Publication Analysis

Top Keywords

toxicological risk
8
fish consumption
8
concentrations
6
multi-year monitoring
4
monitoring toxicological
4
risk heavy
4
heavy metals
4
fish
4
metals fish
4
consumption population
4

Similar Publications

This study examines pollution, ecotoxicological, and health risks of B, F, and S in seawater and sediments along the southern Mediterranean Sea. Strong positive loading on B in sediment, PLI, and NPI suggested that the high B content raises the total amount of contamination and cumulative risks to benthic organisms. Logk for S and F were <3 indicating that they were easily transported to the water column.

View Article and Find Full Text PDF

Background: The Charlson Comorbidity Index (CCI) is a frequently used mortality predictor based on a scoring system for the number and type of patient comorbidities health researchers have used since the late 1980s. The initial purpose of the CCI was to classify comorbid conditions, which could alter the risk of patient mortality within a 1-year time frame. However, the CCI may not accurately reflect risk among American Indians because they are a small proportion of the US population and possibly lack representation in the original patient cohort.

View Article and Find Full Text PDF

Leachables leached from a medical device during its clinical use are important due to the patient health-related effects they may have. Thus, medical devices are profiled for leachables (and/or extractables as probable leachables) by screening extracts or leachates of the medical device for released organic substances via non-targeted analysis (NTA) employing chromatographic methods coupled with mass spectrometric detection. Chromatographic mass spectral response factors for extractables and leachables vary significantly from compound to compound, complicating the application of assessment strategies such as the Analytical Evaluation Threshold (AET), which is the concentration threshold at or above which an extractable or leachable must be reported for quantitative toxicological risk assessment.

View Article and Find Full Text PDF

Assessment of the Effects of Anatoxin-a In Vitro: Cytotoxicity and Uptake.

Toxins (Basel)

December 2024

Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain.

Anatoxin-a (ATX-a) is a cyanotoxin whose toxicological profile has been underinvestigated in comparison to other cyanotoxins such as microcystins (MCs) or cylindrospermopsin (CYN). However, its wide distribution, occurrence, and toxic episodes justify more attention. It is classified as a neurotoxin, but it has also been reported to affect other organs and systems.

View Article and Find Full Text PDF

Degradation of Cylindrospermopsin Spiked in Natural Water (Paranoá Lake, Brasília, Brazil) by Fenton Process: A Bench-Scale Study.

Toxins (Basel)

December 2024

Environmental Technology and Water Resources Postgraduate Program, Department of Civil and Environmental Engineering, University of Brasília, Brasília 70910-900, Brazil.

The frequency and intensity of harmful cyanobacterial blooms have increased in the last decades, posing a risk to public health since conventional water treatments do not effectively remove extracellular cyanotoxins. Consequently, advanced technologies such as the Fenton process are required to ensure water safety. The cyanotoxin cylindrospermopsin (CYN) demands special attention, as it is abundant in the extracellular fraction and has a high toxicological potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!